A platform for research: civil engineering, architecture and urbanism
Mercury adsorption characteristics of carbon sorbent with low surface area
Several studies have been conducted to decrease the cost of sorbents used for the control of mercury emissions. Thus far, several sorbents with low surface areas have been reported to exhibit promising mercury removal capacities. However, based on the results reported, it is difficult to understand the mechanisms of adsorption and oxidization of elemental mercury on sorbents with low surface areas compared to those with higher surface areas. Three types of materials with different surface areas were evaluated herein for use as carbon sorbents for the adsorption of elemental mercury: (1) coal, (2) sewage sludge, and (3) unburned carbon. The respective raw sorbents and FeCl3-impreganted congeners were evaluated. Each sorbent was tested in a fixed-bed reactor system under two simulated flue gas conditions (1) without and (2) with 20 ppm hydrogen chloride (HCl). The injection of HCl increased the mercury adsorption efficiency of all tested sorbents by decreasing the emission of elemental mercury. Doping the sorbent with FeCl3 increased the mercury adsorption efficiency during the earlier test period under both simulated flue gas conditions (without and with HCl). FeCl3-impregnated activated carbon and FeCl3-impregnated unburned carbon emitted large amounts of oxidized mercury during the later test periods.
Implications: We tested three types of sorbents to investigate the mercury adsorption characteristics of sorbents with low surface area. The mercury adsorption test was conducted by varying the raw material of the sorbent, chemical impregnation of the sorbent and the simulated flue gas composition. We found that HCl in simulated flue gas increased the mercury adsorption efficiency of both the raw and FeCl3-impregnated sorbents by decreasing the emission of elemental mercury.
Mercury adsorption characteristics of carbon sorbent with low surface area
Several studies have been conducted to decrease the cost of sorbents used for the control of mercury emissions. Thus far, several sorbents with low surface areas have been reported to exhibit promising mercury removal capacities. However, based on the results reported, it is difficult to understand the mechanisms of adsorption and oxidization of elemental mercury on sorbents with low surface areas compared to those with higher surface areas. Three types of materials with different surface areas were evaluated herein for use as carbon sorbents for the adsorption of elemental mercury: (1) coal, (2) sewage sludge, and (3) unburned carbon. The respective raw sorbents and FeCl3-impreganted congeners were evaluated. Each sorbent was tested in a fixed-bed reactor system under two simulated flue gas conditions (1) without and (2) with 20 ppm hydrogen chloride (HCl). The injection of HCl increased the mercury adsorption efficiency of all tested sorbents by decreasing the emission of elemental mercury. Doping the sorbent with FeCl3 increased the mercury adsorption efficiency during the earlier test period under both simulated flue gas conditions (without and with HCl). FeCl3-impregnated activated carbon and FeCl3-impregnated unburned carbon emitted large amounts of oxidized mercury during the later test periods.
Implications: We tested three types of sorbents to investigate the mercury adsorption characteristics of sorbents with low surface area. The mercury adsorption test was conducted by varying the raw material of the sorbent, chemical impregnation of the sorbent and the simulated flue gas composition. We found that HCl in simulated flue gas increased the mercury adsorption efficiency of both the raw and FeCl3-impregnated sorbents by decreasing the emission of elemental mercury.
Mercury adsorption characteristics of carbon sorbent with low surface area
Park, Jeongmin (author) / Lee, Sang-Sup (author)
Journal of the Air & Waste Management Association ; 71 ; 1445-1452
2021-11-02
8 pages
Article (Journal)
Electronic Resource
Unknown
Modeling Mercury Removal by Sorbent Injection
Taylor & Francis Verlag | 1999
|Sorbent Injection for Flue Gas Mercury Control
British Library Conference Proceedings | 1994
|Sorbent Injection for Flue Gas Mercury Control
British Library Conference Proceedings | 1994
|Mercury Reduction Performance of Concrete-Friendly™ C-PAC™ Sorbent
British Library Conference Proceedings | 2007
|Adsorption of mercury on activated carbon
Wiley | 2022
|