A platform for research: civil engineering, architecture and urbanism
Input Vector Normalization Methods in Support Vector Machines for Automatic Incident Detection
It is known that support vector machines (SVMs), based on statistical learning theory, are an efficient approach to solving the pattern recognition problem because of their remarkable performance in terms of prediction accuracy. When applying SVMs, the input vectors should be normalized. The prediction performance would differ according to the normalization method used. Thus, it is important to choose an efficient method for normalizing input vectors as this could improve the prediction performance of the SVMs. In this paper, various normalization methods for input vectors have been studied and the best normalization method proposed to achieve the best performance in automatic incident detection. The experimental results show that the performance of an automatic incident detection system using SVMs can be highly dependent on the method used in normalizing the input vectors, and that the proposed normalization method is the most efficient method for automatic incident detection.
Input Vector Normalization Methods in Support Vector Machines for Automatic Incident Detection
It is known that support vector machines (SVMs), based on statistical learning theory, are an efficient approach to solving the pattern recognition problem because of their remarkable performance in terms of prediction accuracy. When applying SVMs, the input vectors should be normalized. The prediction performance would differ according to the normalization method used. Thus, it is important to choose an efficient method for normalizing input vectors as this could improve the prediction performance of the SVMs. In this paper, various normalization methods for input vectors have been studied and the best normalization method proposed to achieve the best performance in automatic incident detection. The experimental results show that the performance of an automatic incident detection system using SVMs can be highly dependent on the method used in normalizing the input vectors, and that the proposed normalization method is the most efficient method for automatic incident detection.
Input Vector Normalization Methods in Support Vector Machines for Automatic Incident Detection
Kim, Daehyon (author) / Lee, Seungjae (author) / Cho, Seongkil (author)
Transportation Planning and Technology ; 30 ; 593-608
2007-12-01
16 pages
Article (Journal)
Electronic Resource
Unknown
Input Vector Normalization Methods in Support Vector Machines for Automatic Incident Detection
Online Contents | 2007
|Support Vector Machine Models in Freeway Incident Detection
British Library Conference Proceedings | 2003
|Traffic Incident Detection Using Multiple-Kernel Support Vector Machine
British Library Online Contents | 2012
|Automatic architectural style detection using one-class support vector machines and graph kernels
British Library Online Contents | 2016
|