A platform for research: civil engineering, architecture and urbanism
Long-term impact of PM2.5 mass and sulfur reductions on ultrafine particle trends in Boston, MA from 1999 to 2018
Ultrafine particles (UFPs) pose a human health risk as they can penetrate deep into the respiratory system. The Harvard supersite in Boston, MA provides one of the longest time series of UFP concentrations. This study examined the hypothesis that long-term reductions in PM2.5 mass and sulfur have influenced UFP trends by limiting the ability of UFPs to coagulate onto the accumulation mode via polydisperse coagulation with larger particles. The study used Generalized Additive Models (GAMs) to assess whether changes in PM2.5 mass and sulfur concentrations resulted in smaller than expected (assuming no change in PM2.5 mass or sulfur) decreases in daily UFP trends over the 20-year period from 1999 to 2018. The impact of PM2.5 mass and sulfur changes were represented as UFP penalties. Bootstrapping was applied to calculate standard errors for the different trend and penalty estimates. Results showed that PM2.5 mass and sulfur concentrations declined significantly over the study period. The analysis found an estimated 7.3% (95% CI: 3.5, 11.1%) UFP penalty due to long-term PM2.5 mass trends, and a 9.9% (95% CI: 6.2, 13.7%) UFP penalty due to long-term sulfur trends. Findings from this study suggest that future UFP control efforts should account for the role of PM2.5 mass and sulfur changes.
Using one of the longest available time series of UFP concentrations (1999 to 2018), this study examined the hypothesis that long-term trends of PM2.5 mass and sulfur concentrations have an impact on UFP trends. We found that PM2.5 mass and sulfur reductions had a small but significant impact, i.e., penalty, on UFP trends. Improved understanding of the impact of PM2.5 mass and sulfur concentrations on UFP trends can inform future air quality control efforts.
Long-term impact of PM2.5 mass and sulfur reductions on ultrafine particle trends in Boston, MA from 1999 to 2018
Ultrafine particles (UFPs) pose a human health risk as they can penetrate deep into the respiratory system. The Harvard supersite in Boston, MA provides one of the longest time series of UFP concentrations. This study examined the hypothesis that long-term reductions in PM2.5 mass and sulfur have influenced UFP trends by limiting the ability of UFPs to coagulate onto the accumulation mode via polydisperse coagulation with larger particles. The study used Generalized Additive Models (GAMs) to assess whether changes in PM2.5 mass and sulfur concentrations resulted in smaller than expected (assuming no change in PM2.5 mass or sulfur) decreases in daily UFP trends over the 20-year period from 1999 to 2018. The impact of PM2.5 mass and sulfur changes were represented as UFP penalties. Bootstrapping was applied to calculate standard errors for the different trend and penalty estimates. Results showed that PM2.5 mass and sulfur concentrations declined significantly over the study period. The analysis found an estimated 7.3% (95% CI: 3.5, 11.1%) UFP penalty due to long-term PM2.5 mass trends, and a 9.9% (95% CI: 6.2, 13.7%) UFP penalty due to long-term sulfur trends. Findings from this study suggest that future UFP control efforts should account for the role of PM2.5 mass and sulfur changes.
Using one of the longest available time series of UFP concentrations (1999 to 2018), this study examined the hypothesis that long-term trends of PM2.5 mass and sulfur concentrations have an impact on UFP trends. We found that PM2.5 mass and sulfur reductions had a small but significant impact, i.e., penalty, on UFP trends. Improved understanding of the impact of PM2.5 mass and sulfur concentrations on UFP trends can inform future air quality control efforts.
Long-term impact of PM2.5 mass and sulfur reductions on ultrafine particle trends in Boston, MA from 1999 to 2018
Fiffer, Melissa (author) / Kang, Choong-Min (author) / Requia, Weeberb J. (author) / Koutrakis, Petros (author)
Journal of the Air & Waste Management Association ; 70 ; 700-707
2020-07-02
8 pages
Article (Journal)
Electronic Resource
Unknown
DOAJ | 2021
|Ambient PM2.5 species and ultrafine particle exposure and their differential metabolomic signatures
DOAJ | 2021
|Taylor & Francis Verlag | 2003
|Taylor & Francis Verlag | 2005
|PM2.5 and ultrafine particles emitted during heating of commercial cooking oils
Online Contents | 2012
|