A platform for research: civil engineering, architecture and urbanism
Chemical stability investigation of haloolefin refrigerants and their blends with lubricants
This paper examines the findings of highly accelerated life tests (HALT), conducted according to ASHRAE Standard 97 sealed glass tube methodology for R-123 like, R-134a like and R-410A/R-404A like lower global warming potential (GWP) alternatives. Additionally, possible chemical breakdown pathways are reviewed for the new haloolefin refrigerants. Note, compositions for the following blends are shown as percent by weight. For R-123 like refrigerants, R-1336mzz(Z), R-1336mzz(E), R-514A (74.7% R-1336mzz(Z)/25.3% R-1130(E)), R-1233zd(E), and R-1224yd(Z) were examined with and without lubricants. R-1233zd(E) and R-1224yd(Z) were evaluated with mineral oil and the rest were evaluated with polyalkylene glycol (PAG), polyolester (POE) and polyvinyl ether (PVE) lubricants. For R-134a like refrigerants, R-1234ze(E), R-450A (42% R-134a/58% R-1234ze(E)), R-515B (91.1% R-1234ze(E)/8.9% R-227ea), R-1234yf, R-513A (56% R-1234yf/44% R-134a), and R-516A (77.5% R-1234yf/8.5% R-134a/14.0% R-152a) were examined with and without PAG, POE, and PVE lubricants. For R-410A/R-404A like, R-454B (68.9% R-32/31.1% R-1234yf), R-454C (21.5% R-32/78.5% R-1234yf), R-455A (3.0% R-744/21.5% R-32/75.5% R-1234yf), and R-468A (3.5% R-1132a/21.5% R-32/75.0% R-1234yf) were also examined with PAG, POE and PVE lubricants. R-466A (49% R-32/11.5% R-125/39.5% CF3I) was part of this study but will not be covered since it does not contain a haloolefin component.
Chemical stability investigation of haloolefin refrigerants and their blends with lubricants
This paper examines the findings of highly accelerated life tests (HALT), conducted according to ASHRAE Standard 97 sealed glass tube methodology for R-123 like, R-134a like and R-410A/R-404A like lower global warming potential (GWP) alternatives. Additionally, possible chemical breakdown pathways are reviewed for the new haloolefin refrigerants. Note, compositions for the following blends are shown as percent by weight. For R-123 like refrigerants, R-1336mzz(Z), R-1336mzz(E), R-514A (74.7% R-1336mzz(Z)/25.3% R-1130(E)), R-1233zd(E), and R-1224yd(Z) were examined with and without lubricants. R-1233zd(E) and R-1224yd(Z) were evaluated with mineral oil and the rest were evaluated with polyalkylene glycol (PAG), polyolester (POE) and polyvinyl ether (PVE) lubricants. For R-134a like refrigerants, R-1234ze(E), R-450A (42% R-134a/58% R-1234ze(E)), R-515B (91.1% R-1234ze(E)/8.9% R-227ea), R-1234yf, R-513A (56% R-1234yf/44% R-134a), and R-516A (77.5% R-1234yf/8.5% R-134a/14.0% R-152a) were examined with and without PAG, POE, and PVE lubricants. For R-410A/R-404A like, R-454B (68.9% R-32/31.1% R-1234yf), R-454C (21.5% R-32/78.5% R-1234yf), R-455A (3.0% R-744/21.5% R-32/75.5% R-1234yf), and R-468A (3.5% R-1132a/21.5% R-32/75.0% R-1234yf) were also examined with PAG, POE and PVE lubricants. R-466A (49% R-32/11.5% R-125/39.5% CF3I) was part of this study but will not be covered since it does not contain a haloolefin component.
Chemical stability investigation of haloolefin refrigerants and their blends with lubricants
Kujak, Steve (author) / Leehey, Morgan (author)
Science and Technology for the Built Environment ; 29 ; 936-953
2023-10-21
18 pages
Article (Journal)
Electronic Resource
Unknown
Compatibility of refrigerants and lubricants with motor materials
British Library Online Contents | 1993
|Miscibility of Seven Different Lubricants with Ten Different Non-CFC Refrigerants
British Library Online Contents | 1994
|Miscibility of Seven Different Lubricants with Ten Different Non-CFC Refrigerants
British Library Conference Proceedings | 1994
|British Library Online Contents | 1998
|British Library Conference Proceedings | 1998
|