A platform for research: civil engineering, architecture and urbanism
Domestic demand-side response with heat pumps: controls and tariffs
Electric heat pumps feature prominently in projected energy transitions in the UK and elsewhere. Owing to their high electricity consumption, heat pumps are viewed as important targets for demand-side response (DSR). Findings are presented from a field trial of a new control system that aims to optimize heat pump performance, including under time-varying tariff conditions. The trial involved monitoring 76 properties with heat pumps, but without dedicated heat storage; 31 of these received the control system. Interviews were conducted with a subsample of 12 participants. The controller successfully evened out electricity demand over the day (reducing the evening peak), but this was associated with increased late night and daytime temperatures. Interview participants reported some disturbance owing to overnight heating and noise, as well as usability issues with the controller interface and hardware. These issues present risks to the future acceptability of such systems. While the system delivered short-term demand reductions successfully, longer-term demand shifting risked causing unacceptable disturbance to occupants. Future control systems could overcome some of the issues identified in this pioneering trial through more effective zoning, using temperature caps or installing dedicated heat storage, but these may either limit the available flexibility or be challenging to achieve.
Domestic demand-side response with heat pumps: controls and tariffs
Electric heat pumps feature prominently in projected energy transitions in the UK and elsewhere. Owing to their high electricity consumption, heat pumps are viewed as important targets for demand-side response (DSR). Findings are presented from a field trial of a new control system that aims to optimize heat pump performance, including under time-varying tariff conditions. The trial involved monitoring 76 properties with heat pumps, but without dedicated heat storage; 31 of these received the control system. Interviews were conducted with a subsample of 12 participants. The controller successfully evened out electricity demand over the day (reducing the evening peak), but this was associated with increased late night and daytime temperatures. Interview participants reported some disturbance owing to overnight heating and noise, as well as usability issues with the controller interface and hardware. These issues present risks to the future acceptability of such systems. While the system delivered short-term demand reductions successfully, longer-term demand shifting risked causing unacceptable disturbance to occupants. Future control systems could overcome some of the issues identified in this pioneering trial through more effective zoning, using temperature caps or installing dedicated heat storage, but these may either limit the available flexibility or be challenging to achieve.
Domestic demand-side response with heat pumps: controls and tariffs
Sweetnam, Trevor (author) / Fell, Michael (author) / Oikonomou, Eleni (author) / Oreszczyn, Tadj (author)
Building Research & Information ; 47 ; 344-361
2019-05-19
18 pages
Article (Journal)
Electronic Resource
Unknown
Domestic demand-side response with heat pumps: controls and tariffs
British Library Online Contents | 2019
|BASE | 2019
|