A platform for research: civil engineering, architecture and urbanism
Treatment and kinetic study of cyanobacterial toxin by ozone
A rapid scan-stopped flow (RS-SF) reactor was used to study reaction between ozone and cyanobacterial toxins [microcystin-LR (MC-LR) and microcystin-RR (MC-RR)] at different pH values and over a temperature range of 20-30°C. The ozonation reaction was very effective for elimination of microcystin; solutions of concentration up to 5 mg/L MC-LR were totally oxidized by an ozone dosage of 2 mg/L. Reactions were dependent on ozone dose, temperatures, and pH. A more effective reaction took place at a higher ozone dose, higher temperatures, and more acidic pH. Spectrophotometer analysis was used to study the ozonation kinetics. Reactions were very fast: with an initial ozone concentration of 2 mg/L the half-life time of the toxins was less than 20 s. Ozonation reaction was successfully modeled to an overall second-order kinetics and with first-order kinetics for both ozone and toxins. Overall rate constants (K) were found to be 6.79 × 104 M-1s-1 for MC-LR and 2.45 × 105 M-1s-1 for MC-RR at 20°C, with a pH of 2. The main degradation intermediates and the toxicity of the treated solution were also evaluated. The identified by-products were related to ozone dose. The high available ozone concentration degraded the toxins into smaller by-products and led to a ring opening. On the other hand, at a low ozone dose larger intermediates were detected. The treated solution toxicity was also found to be related to the ozone available in the aqueous solution; a high ozone dose led to cleavage of the Adda side chain from the toxin and reduced the toxicity.
Treatment and kinetic study of cyanobacterial toxin by ozone
A rapid scan-stopped flow (RS-SF) reactor was used to study reaction between ozone and cyanobacterial toxins [microcystin-LR (MC-LR) and microcystin-RR (MC-RR)] at different pH values and over a temperature range of 20-30°C. The ozonation reaction was very effective for elimination of microcystin; solutions of concentration up to 5 mg/L MC-LR were totally oxidized by an ozone dosage of 2 mg/L. Reactions were dependent on ozone dose, temperatures, and pH. A more effective reaction took place at a higher ozone dose, higher temperatures, and more acidic pH. Spectrophotometer analysis was used to study the ozonation kinetics. Reactions were very fast: with an initial ozone concentration of 2 mg/L the half-life time of the toxins was less than 20 s. Ozonation reaction was successfully modeled to an overall second-order kinetics and with first-order kinetics for both ozone and toxins. Overall rate constants (K) were found to be 6.79 × 104 M-1s-1 for MC-LR and 2.45 × 105 M-1s-1 for MC-RR at 20°C, with a pH of 2. The main degradation intermediates and the toxicity of the treated solution were also evaluated. The identified by-products were related to ozone dose. The high available ozone concentration degraded the toxins into smaller by-products and led to a ring opening. On the other hand, at a low ozone dose larger intermediates were detected. The treated solution toxicity was also found to be related to the ozone available in the aqueous solution; a high ozone dose led to cleavage of the Adda side chain from the toxin and reduced the toxicity.
Treatment and kinetic study of cyanobacterial toxin by ozone
Al Momani, Fares A. (author) / Jarrah, Nabeel (author)
Journal of Environmental Science and Health, Part A ; 45 ; 719-731
2010-05-01
13 pages
Article (Journal)
Electronic Resource
English
Toxicity assessment of cyanobacterial toxin mixtures
Online Contents | 2002
|Toxicity assessment of cyanobacterial toxin mixtures
Wiley | 2002
|Occurrence of the cyanobacterial toxin cylindrospermopsin in northeast Germany
Online Contents | 2007
|