A platform for research: civil engineering, architecture and urbanism
Mechanical characteristics of PET fibre-reinforced green ultra-high performance composite concrete
Experimental investigations were performed to evaluate the effect of waste Polyethylene Terephthalate (PET) fibres on the mechanical properties of Green Ultra-High Performance Cementitious Composites (GUHPCCs). Ultra-fine Palm Oil Fuel Ash (UPOFA) and Silica Fume (SF) were utilised to produce GUHPCCs that consist of up to 50% UPOFA and 20% SF as a partial replacement binder with cement. PET fibres were added to the GUHPCCs at a proportion of 1% of the total mixed volume, to produce Green Ultra-High Performance PET reinforced Cementitious Composites (GUHPPCCs). The mechanical properties and flexural performance of the resulting beams and slabs, including their stress–strain behaviour and ductility, were investigated. Results showed that addition of PET fibres increases the flexural strength of GUHPPCCs beams by approximately 63.24% compared with that of the ultra-high performance concrete control at the age of 90 days. Moreover, significant improvements in the flexural capacity and ductility index of the GUHPPCCs slabs were obtained. These findings may due to the bridging effects of PET fibres. Thus, the combination of UPOFA and SF with PET fibres can produce GUHPPCCs with superior mechanical properties and enhanced ductility.
Mechanical characteristics of PET fibre-reinforced green ultra-high performance composite concrete
Experimental investigations were performed to evaluate the effect of waste Polyethylene Terephthalate (PET) fibres on the mechanical properties of Green Ultra-High Performance Cementitious Composites (GUHPCCs). Ultra-fine Palm Oil Fuel Ash (UPOFA) and Silica Fume (SF) were utilised to produce GUHPCCs that consist of up to 50% UPOFA and 20% SF as a partial replacement binder with cement. PET fibres were added to the GUHPCCs at a proportion of 1% of the total mixed volume, to produce Green Ultra-High Performance PET reinforced Cementitious Composites (GUHPPCCs). The mechanical properties and flexural performance of the resulting beams and slabs, including their stress–strain behaviour and ductility, were investigated. Results showed that addition of PET fibres increases the flexural strength of GUHPPCCs beams by approximately 63.24% compared with that of the ultra-high performance concrete control at the age of 90 days. Moreover, significant improvements in the flexural capacity and ductility index of the GUHPPCCs slabs were obtained. These findings may due to the bridging effects of PET fibres. Thus, the combination of UPOFA and SF with PET fibres can produce GUHPPCCs with superior mechanical properties and enhanced ductility.
Mechanical characteristics of PET fibre-reinforced green ultra-high performance composite concrete
Alani, Aktham H. (author) / Bunnori, N. Muhamad (author) / Noaman, Ahmed Tareq (author) / Majid, T. A (author)
European Journal of Environmental and Civil Engineering ; 26 ; 2797-2818
2022-05-19
22 pages
Article (Journal)
Electronic Resource
Unknown
Ultra High Performance Fibre Reinforced Concrete: A Material for Green Buildings
British Library Conference Proceedings | 2008
|Mechanical Properties of Ultra High Performance Fibre Reinforced Concrete at High Temperatures
British Library Conference Proceedings | 2008
|British Library Online Contents | 2015
|