A platform for research: civil engineering, architecture and urbanism
Development and Evaluation of an Impactor for a PM2.5 Speciation Sampler
A conventional impactor for a particle speciation sampler was developed and validated through laboratory and field tests. The speciation sampler consists of the following components: a PM2.5 conventional impactor that removes particles larger than 2.5 μm, an all-glass, coated honeycomb diffusion denuder, and a 47-mm filter pack. The speciation sampler can operate at two different sampling rates: 10 and 16.7 L/min. An experimental characterization of the impactor’s performance was conducted. The impactor’s collection efficiency was examined as a function of critical design parameters such as Reynolds number, the distance from the nozzle exit to the impac-tion plate, and the impaction substrate coating method. The bounce of particles larger than the cut point was successfully minimized by using a greased surface as the im-paction substrate. Additionally, a series of field intercomparison experiments were conducted at both 10 and 16.7 L/min airflow. PM2.5 mass and SO4 2- concentrations were measured and compared with the Federal Reference Method (FRM) and found to be in good agreement. Results of the laboratory chamber tests also indicated that the impactor’s performance was in good agreement with the FRM.
Development and Evaluation of an Impactor for a PM2.5 Speciation Sampler
A conventional impactor for a particle speciation sampler was developed and validated through laboratory and field tests. The speciation sampler consists of the following components: a PM2.5 conventional impactor that removes particles larger than 2.5 μm, an all-glass, coated honeycomb diffusion denuder, and a 47-mm filter pack. The speciation sampler can operate at two different sampling rates: 10 and 16.7 L/min. An experimental characterization of the impactor’s performance was conducted. The impactor’s collection efficiency was examined as a function of critical design parameters such as Reynolds number, the distance from the nozzle exit to the impac-tion plate, and the impaction substrate coating method. The bounce of particles larger than the cut point was successfully minimized by using a greased surface as the im-paction substrate. Additionally, a series of field intercomparison experiments were conducted at both 10 and 16.7 L/min airflow. PM2.5 mass and SO4 2- concentrations were measured and compared with the Federal Reference Method (FRM) and found to be in good agreement. Results of the laboratory chamber tests also indicated that the impactor’s performance was in good agreement with the FRM.
Development and Evaluation of an Impactor for a PM2.5 Speciation Sampler
Demokritou, Philip (author) / Kavouras, Ilias G. (author) / Harrison, David (author) / Koutrakis, Petros (author)
Journal of the Air & Waste Management Association ; 51 ; 514-523
2001-04-01
10 pages
Article (Journal)
Electronic Resource
Unknown
Elsevier | 1983
|Development and Laboratory Performance Evaluation of a Personal Cascade Impactor
Taylor & Francis Verlag | 2002
|British Library Online Contents | 1994
|