A platform for research: civil engineering, architecture and urbanism
Automatic classification of pavement crack using deep convolutional neural network
The classification of pavement crack heavily relies on the engineers’ experience or the hand-crafted algorithms. Convolutional Neural Network (CNN) has demonstrated to be useful for image classification, which provides an alternative to traditional imaging classification algorithms. This paper proposes a novel method using deep CNN to automatically classify image patches cropped from 3D pavement images. In all, four supervised CNNs with different sizes of receptive field are successfully trained. The experimental results demonstrate that all the proposed CNNs can perform the classification with a high accuracy. Overall classification accuracy of each proposed CNN is above 94%. Upon the evaluation of these neural networks with respect to accuracy and training time, we find that the size of receptive field has a slight effect on the classification accuracy. However, the CNNs with smaller size of receptive field require more training times than others.
Automatic classification of pavement crack using deep convolutional neural network
The classification of pavement crack heavily relies on the engineers’ experience or the hand-crafted algorithms. Convolutional Neural Network (CNN) has demonstrated to be useful for image classification, which provides an alternative to traditional imaging classification algorithms. This paper proposes a novel method using deep CNN to automatically classify image patches cropped from 3D pavement images. In all, four supervised CNNs with different sizes of receptive field are successfully trained. The experimental results demonstrate that all the proposed CNNs can perform the classification with a high accuracy. Overall classification accuracy of each proposed CNN is above 94%. Upon the evaluation of these neural networks with respect to accuracy and training time, we find that the size of receptive field has a slight effect on the classification accuracy. However, the CNNs with smaller size of receptive field require more training times than others.
Automatic classification of pavement crack using deep convolutional neural network
Li, Baoxian (author) / Wang, Kelvin C. P. (author) / Zhang, Allen (author) / Yang, Enhui (author) / Wang, Guolong (author)
International Journal of Pavement Engineering ; 21 ; 457-463
2020-03-20
7 pages
Article (Journal)
Electronic Resource
English
Crack Detection and Classification in Moroccan Pavement Using Convolutional Neural Network
DOAJ | 2022
|Vision-Based Crack Detection of Asphalt Pavement Using Deep Convolutional Neural Network
Springer Verlag | 2021
|Pavement Fatigue Crack Detection and Severity Classification Based on Convolutional Neural Network
ArXiv | 2024
|Automatic pavement crack detection using multimodal features fusion deep neural network
Taylor & Francis Verlag | 2023
|