A platform for research: civil engineering, architecture and urbanism
Codependencies of Reactive Air Toxic and Criteria Pollutants on Emission Reductions
It is important to understand the effects of emission controls on concentrations of ozone, fine particulate matter (PM2.5), and hazardous air pollutants (HAPs) simultaneously, to evaluate the full range of health, ecosystem, and economic effects. Until recently, the capability to simultaneously evaluate interrelated atmospheric pollutants (“one atmosphere” analysis) was unavailable to air quality managers. In this work, we use an air quality model to examine the potential effect of three emission reductions on concentrations of ozone, PM2.5, and four important HAPs (formaldehyde, acetaldehyde, acrolein, and benzene) over a domain centered on Philadelphia for 12-day episodes in July and January 2001. Although NOx controls are predicted to benefit PM2.5 concentrations and sometimes benefit ozone, they have only a small effect on formaldehyde, slightly increase acetaldehyde and acrolein, and have no effect on benzene in the July episode. Concentrations of all pollutants except benzene increase slightly with NOx controls in the January simulation. Volatile organic compound controls alone are found to have a small effect on ozone and PM2.5, a less than linear effect on decreasing aldehydes, and an approximately linear effect on acrolein and benzene in summer, but a slightly larger than linear effect on aldehydes and acrolein in winter. These simulations indicate the difficulty in assessing how toxic air pollutants might respond to emission reductions aimed at decreasing criteria pollutants such as ozone and PM2.5.
Codependencies of Reactive Air Toxic and Criteria Pollutants on Emission Reductions
It is important to understand the effects of emission controls on concentrations of ozone, fine particulate matter (PM2.5), and hazardous air pollutants (HAPs) simultaneously, to evaluate the full range of health, ecosystem, and economic effects. Until recently, the capability to simultaneously evaluate interrelated atmospheric pollutants (“one atmosphere” analysis) was unavailable to air quality managers. In this work, we use an air quality model to examine the potential effect of three emission reductions on concentrations of ozone, PM2.5, and four important HAPs (formaldehyde, acetaldehyde, acrolein, and benzene) over a domain centered on Philadelphia for 12-day episodes in July and January 2001. Although NOx controls are predicted to benefit PM2.5 concentrations and sometimes benefit ozone, they have only a small effect on formaldehyde, slightly increase acetaldehyde and acrolein, and have no effect on benzene in the July episode. Concentrations of all pollutants except benzene increase slightly with NOx controls in the January simulation. Volatile organic compound controls alone are found to have a small effect on ozone and PM2.5, a less than linear effect on decreasing aldehydes, and an approximately linear effect on acrolein and benzene in summer, but a slightly larger than linear effect on aldehydes and acrolein in winter. These simulations indicate the difficulty in assessing how toxic air pollutants might respond to emission reductions aimed at decreasing criteria pollutants such as ozone and PM2.5.
Codependencies of Reactive Air Toxic and Criteria Pollutants on Emission Reductions
Luecken, Deborah J. (author) / Cimorelli, Alan J. (author)
Journal of the Air & Waste Management Association ; 58 ; 693-701
2008-05-01
9 pages
Article (Journal)
Electronic Resource
Unknown
Modeling Criteria and Air Toxic Pollutants in Light-Duty Biodiesel Exhaust
British Library Online Contents | 2016
|Building national emission inventories of toxic pollutants in Europe
Elsevier | 2019
|British Library Conference Proceedings | 1996
|Toxic air pollutants in Chernivtsi, Ukraine
Online Contents | 1997
|