A platform for research: civil engineering, architecture and urbanism
Issues with Ozone Attainment Methodology for Houston, TX
To comply with the federal 8-hr ozone standard, the state of Texas is creating a plan for Houston that strictly follows the U.S. Environmental Protection Agency's (EPA) guidance for demonstrating attainment. EPA's attainment guidance methodology has several key assumptions that are demonstrated to not be completely appropriate for the unique observed ozone conditions found in Houston. Houston's ozone violations at monitoring sites are realized as gradual hour-to-hour increases in ozone concentrations, or by large hourly ozone increases that exceed up to 100 parts per billion/hr. Given the time profiles at the violating monitors and those of nearby monitors, these large increases appear to be associated with small parcels of spatially limited plumes of high ozone in a lower background of urban ozone. Some of these high ozone parcels and plumes have been linked to a combination of unique wind conditions and episodic hydrocarbon emission events from the Houston Ship Channel. However, the regulatory air quality model (AQM) does not predict these sharp ozone gradients. Instead, the AQM predicts gradual hourly increases with broad regions of high ozone covering the entire Houston urban core. The AQM model performance can be partly attributed to EPA attainment guidance that prescribes the removal in the baseline model simulation of any episodic hydrocarbon emissions, thereby potentially removing any nontypical causes of ozone exceedances. This paper shows that attainment of all monitors is achieved when days with observed large hourly variability in ozone concentrations are filtered from attainment metrics. Thus, the modeling and observational data support a second unique cause for how ozone is formed in Houston, and the current EPA methodology addresses only one of these two causes.
Observational analysis in Houston provides compelling evidence that ozone design values at some surface monitors are dominantly influenced by large hourly changes in ozone concentration that are not predicted by the regulatory model. The use of these models, with current EPA attainment methodology, produces policies that likely overestimate precursor control requirements because only one cause of ozone is functioning in the model. This issue has significant regulatory and economic implications for Houston, especially under lower National Ambient Air Quality Standards. An attainment methodology that recognizes two unique causes for high ozone potentially offers a more reliable means for developing and justifying control policies.
Issues with Ozone Attainment Methodology for Houston, TX
To comply with the federal 8-hr ozone standard, the state of Texas is creating a plan for Houston that strictly follows the U.S. Environmental Protection Agency's (EPA) guidance for demonstrating attainment. EPA's attainment guidance methodology has several key assumptions that are demonstrated to not be completely appropriate for the unique observed ozone conditions found in Houston. Houston's ozone violations at monitoring sites are realized as gradual hour-to-hour increases in ozone concentrations, or by large hourly ozone increases that exceed up to 100 parts per billion/hr. Given the time profiles at the violating monitors and those of nearby monitors, these large increases appear to be associated with small parcels of spatially limited plumes of high ozone in a lower background of urban ozone. Some of these high ozone parcels and plumes have been linked to a combination of unique wind conditions and episodic hydrocarbon emission events from the Houston Ship Channel. However, the regulatory air quality model (AQM) does not predict these sharp ozone gradients. Instead, the AQM predicts gradual hourly increases with broad regions of high ozone covering the entire Houston urban core. The AQM model performance can be partly attributed to EPA attainment guidance that prescribes the removal in the baseline model simulation of any episodic hydrocarbon emissions, thereby potentially removing any nontypical causes of ozone exceedances. This paper shows that attainment of all monitors is achieved when days with observed large hourly variability in ozone concentrations are filtered from attainment metrics. Thus, the modeling and observational data support a second unique cause for how ozone is formed in Houston, and the current EPA methodology addresses only one of these two causes.
Observational analysis in Houston provides compelling evidence that ozone design values at some surface monitors are dominantly influenced by large hourly changes in ozone concentration that are not predicted by the regulatory model. The use of these models, with current EPA attainment methodology, produces policies that likely overestimate precursor control requirements because only one cause of ozone is functioning in the model. This issue has significant regulatory and economic implications for Houston, especially under lower National Ambient Air Quality Standards. An attainment methodology that recognizes two unique causes for high ozone potentially offers a more reliable means for developing and justifying control policies.
Issues with Ozone Attainment Methodology for Houston, TX
Vizuete, William (author) / Jeffries, Harvey E. (author) / Tesche, T.W. (author) / Olaguer, Eduardo P. (author) / Couzo, Evan (author)
Journal of the Air & Waste Management Association ; 61 ; 238-253
2011-03-01
16 pages
Article (Journal)
Electronic Resource
Unknown
Taylor & Francis Verlag | 2010
|Redesignation of Southeast Michigan as Attainment for Ozone
British Library Conference Proceedings | 1994
|Redesignation of Southeast Michigan as Attainment for Ozone
British Library Conference Proceedings | 1994
|Meteorological Factors of Ozone Predictability at Houston, Texas
Taylor & Francis Verlag | 2000
|Interpreting treatment plant performance using an attainment frequency methodology
British Library Conference Proceedings | 1994
|