A platform for research: civil engineering, architecture and urbanism
Which Meteorological Conditions Produce Worst-Case Odors from Area Sources?
Two competing meteorological factors influence atmospheric concentrations of pollutants from open liquid area sources such as wastewater treatment plant units: temperature and stability. High temperatures in summer produce greater emissions from liquid area sources because of increased compound volatility; however, these emissions tend to disperse more readily because of frequent occurrence of unstable conditions. An opposite scenario occurs in winter, with lesser emissions due to lower temperatures, but also frequently less dispersion, due to stable atmospheric conditions. The primary objective of this modeling study was thus to determine whether higher atmospheric concentrations from open liquid area sources occur more frequently in summer, when emissions are greater but so is dispersion, or in winter, when emissions are lesser but so is dispersion. The study utilized a rectangular clarifier emitting hydrogen sulfide as a sample open liquid area source. Dispersion modeling runs were conducted using ISCST3 and AERMOD, encompassing 5 yr of hourly meteorological data divided by season. Emission rates were varied hourly on the basis of a curve-fit developed from previously collected field data. Model output for each season was used to determine (1) maximum 2-min average concentrations, (2) the number of odor events (2-min average concentrations greater than odor detection thresholds), and (3) areas of impact. On the basis of these 3 types of output, it was found that the worst-case odors were associated with summer, considering impacts of meteorology upon both emissions and dispersion. Not accounting for the impact of meteorology on emissions (using a constant worst-case emission rate) caused concentrations to be overpredicted compared with a variable emission rate case. The highest concentrations occurred during stability classes D, E, and F, as anticipated. A comparison of ISCST3 and AERMOD found that for the area source modeled, ISCST3 predicted higher concentrations and more odor events for all seasons.
Which Meteorological Conditions Produce Worst-Case Odors from Area Sources?
Two competing meteorological factors influence atmospheric concentrations of pollutants from open liquid area sources such as wastewater treatment plant units: temperature and stability. High temperatures in summer produce greater emissions from liquid area sources because of increased compound volatility; however, these emissions tend to disperse more readily because of frequent occurrence of unstable conditions. An opposite scenario occurs in winter, with lesser emissions due to lower temperatures, but also frequently less dispersion, due to stable atmospheric conditions. The primary objective of this modeling study was thus to determine whether higher atmospheric concentrations from open liquid area sources occur more frequently in summer, when emissions are greater but so is dispersion, or in winter, when emissions are lesser but so is dispersion. The study utilized a rectangular clarifier emitting hydrogen sulfide as a sample open liquid area source. Dispersion modeling runs were conducted using ISCST3 and AERMOD, encompassing 5 yr of hourly meteorological data divided by season. Emission rates were varied hourly on the basis of a curve-fit developed from previously collected field data. Model output for each season was used to determine (1) maximum 2-min average concentrations, (2) the number of odor events (2-min average concentrations greater than odor detection thresholds), and (3) areas of impact. On the basis of these 3 types of output, it was found that the worst-case odors were associated with summer, considering impacts of meteorology upon both emissions and dispersion. Not accounting for the impact of meteorology on emissions (using a constant worst-case emission rate) caused concentrations to be overpredicted compared with a variable emission rate case. The highest concentrations occurred during stability classes D, E, and F, as anticipated. A comparison of ISCST3 and AERMOD found that for the area source modeled, ISCST3 predicted higher concentrations and more odor events for all seasons.
Which Meteorological Conditions Produce Worst-Case Odors from Area Sources?
Sattler, Melanie (author) / Devanathan, Sapna (author)
Journal of the Air & Waste Management Association ; 57 ; 1296-1306
2007-11-01
11 pages
Article (Journal)
Electronic Resource
Unknown
Taylor & Francis Verlag | 2005
|Tastes and Odors from Chlorination
Wiley | 1921
|Wiley | 1925