A platform for research: civil engineering, architecture and urbanism
Life-cycle cost assessment of conventional and hybrid sliding-rocking bridges in seismic areas
This article investigates the impacts of the column system on bridge life-cycle costs in high seismic areas. It focuses on hybrid sliding-rocking (HSR) columns, which are an accelerated bridge construction (ABC) technology. The authors conduct a life-cycle cost assessment, quantifying costs of bridge construction and potential earthquake damage and subsequent repairs, as well as the cost of bridge closure time due to construction or repairs. Two prototypical modern seismically designed bridges are considered, each designed with both conventional reinforced concrete (RC) and HSR columns. Construction costs of HSR columns are higher. However, drift demands on the HSR columns are generally lower, damage is less severe and costs of repairing the columns are greatly reduced. Moreover, construction times are about 80% quicker for HSR columns, and repair times are reduced relative to conventional construction. The results suggest substantial advantages to the HSR column system, reducing construction time and expected costs and time for seismic repairs sufficiently to counteract the increase in upfront construction costs. The benefits of the HSR, and by extension other ABC column systems, are particularly significant for highly trafficked bridges in high seismic areas, but hold for a wide range of input assumptions.
Life-cycle cost assessment of conventional and hybrid sliding-rocking bridges in seismic areas
This article investigates the impacts of the column system on bridge life-cycle costs in high seismic areas. It focuses on hybrid sliding-rocking (HSR) columns, which are an accelerated bridge construction (ABC) technology. The authors conduct a life-cycle cost assessment, quantifying costs of bridge construction and potential earthquake damage and subsequent repairs, as well as the cost of bridge closure time due to construction or repairs. Two prototypical modern seismically designed bridges are considered, each designed with both conventional reinforced concrete (RC) and HSR columns. Construction costs of HSR columns are higher. However, drift demands on the HSR columns are generally lower, damage is less severe and costs of repairing the columns are greatly reduced. Moreover, construction times are about 80% quicker for HSR columns, and repair times are reduced relative to conventional construction. The results suggest substantial advantages to the HSR column system, reducing construction time and expected costs and time for seismic repairs sufficiently to counteract the increase in upfront construction costs. The benefits of the HSR, and by extension other ABC column systems, are particularly significant for highly trafficked bridges in high seismic areas, but hold for a wide range of input assumptions.
Life-cycle cost assessment of conventional and hybrid sliding-rocking bridges in seismic areas
Valigura, Jakub (author) / Liel, Abbie B. (author) / Sideris, Petros (author)
Structure and Infrastructure Engineering ; 17 ; 702-719
2021-05-04
18 pages
Article (Journal)
Electronic Resource
Unknown
Capacity Spectrum Seismic Design Methodology for Bridges with Hybrid Sliding-Rocking Columns
British Library Online Contents | 2018
|Seismic loss and resilience assessment of single-column rocking bridges
Springer Verlag | 2020
|