A platform for research: civil engineering, architecture and urbanism
Modeling Atmospheric Mercury Deposition in the Vicinity of Power Plants
Two mathematical models of the atmospheric fate and transport of mercury (Hg), an Eulerian grid–based model and a Gaussian plume model, are used to calculate the atmospheric deposition of Hg in the vicinity (i.e., within 50 km) of five coal–fired power plants. The former is applied using two different horizontal resolutions: coarse (84 km) and fine (16.7 km). More than 96% of the power plant Hg emissions are calculated with the plume model to be transported beyond 50 km from the plants. The grid–based model predicts a lower fraction to be transported beyond 50 km: >91% with a coarse resolution and >95% with a fine resolution. The contribution of the power plant emissions to total Hg deposition within a radius of 50 km from the plants is calculated to be <8% with the plume model, <14% with the Eulerian model with a coarse resolution, and <10% with the Eulerian model with a fine resolution. The Eulerian grid–based model predicts greater local impacts than the plume model because of artificially enhanced vertical dispersion; the former predicts about twice as much Hg deposition as the latter when the area considered is commensurate with the resolution of the grid–based model. If one compares the local impacts for an area that is significantly less than the grid–based model resolution, then the grid–based model may predict lower local deposition than the plume model, because two compensating errors affect the results obtained with the grid–based model: initial dilution of the power plant emissions within one or more grid cells and enhanced vertical mixing to the ground.
Modeling Atmospheric Mercury Deposition in the Vicinity of Power Plants
Two mathematical models of the atmospheric fate and transport of mercury (Hg), an Eulerian grid–based model and a Gaussian plume model, are used to calculate the atmospheric deposition of Hg in the vicinity (i.e., within 50 km) of five coal–fired power plants. The former is applied using two different horizontal resolutions: coarse (84 km) and fine (16.7 km). More than 96% of the power plant Hg emissions are calculated with the plume model to be transported beyond 50 km from the plants. The grid–based model predicts a lower fraction to be transported beyond 50 km: >91% with a coarse resolution and >95% with a fine resolution. The contribution of the power plant emissions to total Hg deposition within a radius of 50 km from the plants is calculated to be <8% with the plume model, <14% with the Eulerian model with a coarse resolution, and <10% with the Eulerian model with a fine resolution. The Eulerian grid–based model predicts greater local impacts than the plume model because of artificially enhanced vertical dispersion; the former predicts about twice as much Hg deposition as the latter when the area considered is commensurate with the resolution of the grid–based model. If one compares the local impacts for an area that is significantly less than the grid–based model resolution, then the grid–based model may predict lower local deposition than the plume model, because two compensating errors affect the results obtained with the grid–based model: initial dilution of the power plant emissions within one or more grid cells and enhanced vertical mixing to the ground.
Modeling Atmospheric Mercury Deposition in the Vicinity of Power Plants
Seigneur, Christian (author) / Lohman, Kristen (author) / Vijayaraghavan, Krish (author) / Jansen, John (author) / Levin, Leonard (author)
Journal of the Air & Waste Management Association ; 56 ; 743-751
2006-06-01
9 pages
Article (Journal)
Electronic Resource
Unknown
Atmospheric Mercury Deposition Measurement Techniques - A Review
British Library Conference Proceedings | 1992
|Wind Tunnel Modeling of Atmospheric Dispersion in the Vicinity of Buildings
British Library Conference Proceedings | 1996
|Control strategies of atmospheric mercury emissions from coal-fired power plants in China
Taylor & Francis Verlag | 2012
|Atmospheric mercury modeling in the Mediterranean region
British Library Online Contents | 2000
|Atmospheric mercury deposition to forests in the eastern USA
Online Contents | 2017
|