A platform for research: civil engineering, architecture and urbanism
Pavement performance evaluation of recycled styrene–butadiene–styrene-modified asphalt mixture
More and more styrene–butadiene–styrene (SBS)-modified asphalt waste materials are being discarded with the increase in road service life. The recycling of these waste pavement materials can reduce environmental pollution and help save resources. However, the low-temperature performance and the fatigue resistance of recycled asphalt mixture are significantly affected by the addition of reclaimed asphalt pavement (RAP). In order to evaluate the low-temperature performance and the fatigue resistance of recycled SBS-modified asphalt mixture, three points bending test, Fénix test and Ensayo de BArrido de DEformaciones test were conducted. Additionally, the differences of recycling between SBS-modified RAP with different ageing conditions and ordinary unmodified RAP were compared. The results showed that fatigue resistance of modified recycling of asphalt mixture with different RAPs did not vary much under low temperature (−5 °C) while displaying an obvious difference under higher temperature. SBS-modified RAP under light ageing condition was suitable for modified recycling. However, the SBS-modified asphalt from RAP under serious ageing condition would lose modification effect resulting in a great reduction of the low-temperature crack resistance and the fatigue resistance. Therefore, it is necessary to evaluate the ageing degree of RAP before recycling SBS-modified asphalt mixture. The SBS-modified RAP under serious ageing condition (SM-RAP) is not recommended for directly modified recycling. But considering for further utilisation, the SM-RAP used for unmodified recycling as ordinary unmodified RAP can be regarded as a good choice and the RAP content should be restricted to less than 30%.
Pavement performance evaluation of recycled styrene–butadiene–styrene-modified asphalt mixture
More and more styrene–butadiene–styrene (SBS)-modified asphalt waste materials are being discarded with the increase in road service life. The recycling of these waste pavement materials can reduce environmental pollution and help save resources. However, the low-temperature performance and the fatigue resistance of recycled asphalt mixture are significantly affected by the addition of reclaimed asphalt pavement (RAP). In order to evaluate the low-temperature performance and the fatigue resistance of recycled SBS-modified asphalt mixture, three points bending test, Fénix test and Ensayo de BArrido de DEformaciones test were conducted. Additionally, the differences of recycling between SBS-modified RAP with different ageing conditions and ordinary unmodified RAP were compared. The results showed that fatigue resistance of modified recycling of asphalt mixture with different RAPs did not vary much under low temperature (−5 °C) while displaying an obvious difference under higher temperature. SBS-modified RAP under light ageing condition was suitable for modified recycling. However, the SBS-modified asphalt from RAP under serious ageing condition would lose modification effect resulting in a great reduction of the low-temperature crack resistance and the fatigue resistance. Therefore, it is necessary to evaluate the ageing degree of RAP before recycling SBS-modified asphalt mixture. The SBS-modified RAP under serious ageing condition (SM-RAP) is not recommended for directly modified recycling. But considering for further utilisation, the SM-RAP used for unmodified recycling as ordinary unmodified RAP can be regarded as a good choice and the RAP content should be restricted to less than 30%.
Pavement performance evaluation of recycled styrene–butadiene–styrene-modified asphalt mixture
Wang, Yuanyuan (author) / Sun, Lu (author) / Zhou, Jie (author)
International Journal of Pavement Engineering ; 18 ; 404-413
2017-05-04
10 pages
Article (Journal)
Electronic Resource
English
Pavement performance evaluation of recycled styrene-butadiene-styrene-modified asphalt mixture
Online Contents | 2017
|BASE | 2021
|Fracture Performance of Asphalt Mixture with Styrene Butadiene Styrene Based on the J-Integral
British Library Conference Proceedings | 2013
|