A platform for research: civil engineering, architecture and urbanism
The Effect of Temperature on the Bioventing of Soil Contaminated with Toluene and Decane
The effect of temperature on evaporation and biodegradation rates during soil bioventing (SBV) was studied for a mixture of toluene and decane in bench-scale soil columns at a continuous air flow and consecutively at two different flow rates. The effect of temperature on SBV was monitored by GC headspace analysis of contaminant, CO2 and O2 concentrations in the soil gas over time. Separation of evaporation and biodegradation processes into three different phases based on their rates was used together with Q10 and E10 (values that give the factor by which biodegradation and evaporation rates increase when the temperature is raised by 10 degrees) to compare quantitatively the removal kinetics at 10 and 20°C. Adsorption of toluene and decane onto soil (a phase partitioning process) at 20 and 10°C was described with linear Freundlich isotherms. A temperature decrease from 20 to 10°C resulted in an increase of soil-air partitioning coefficients by a factor of 1.8 and of 2.1 for toluene and decane, respectively. The mean Q10 value for the biodegradation of toluene was found to be 2.2 for a temperature rise from 10 to 20°C. A toluene content in the soil gas above 75% of the saturation concentration inhibited biodegradation at both temperatures. The SBV efficiency was dependent on temperature with respect to remediation time. SBV at 20°C resulted in a 99.8% and a 98.7% reduction of toluene and decane initial concentrations, respectively. To reach similar results at 10°C, about 1.6 times as much time and 1.4 times as much air were required; however, at both temperatures the total amounts of biodegraded hydrocarbons were approximately the same. The evaporation-to-biodegradation ratios at 20°C were 82.5:17.5 for toluene and 16:84 for decane, whereas at 10 °C they were 71:29 and 2:98, respectively. A comparison of Q10 values showed that, except during the initial phase of SBV, only a modest decrease in biodegradation rates should be expected after a decrease in temperature from 20 to 10°C. Flow rate reduction had a significant impact on the toluene evaporation rate at a higher temperature, whereas for decane this rate was only slightly affected by temperature. In contrast to decane, the ratio between toluene vapor pressures at 20 and 10°C may be used to predict the removal of toluene by evaporation during the above-mentioned phases of SBV, when evaporation is important.
The Effect of Temperature on the Bioventing of Soil Contaminated with Toluene and Decane
The effect of temperature on evaporation and biodegradation rates during soil bioventing (SBV) was studied for a mixture of toluene and decane in bench-scale soil columns at a continuous air flow and consecutively at two different flow rates. The effect of temperature on SBV was monitored by GC headspace analysis of contaminant, CO2 and O2 concentrations in the soil gas over time. Separation of evaporation and biodegradation processes into three different phases based on their rates was used together with Q10 and E10 (values that give the factor by which biodegradation and evaporation rates increase when the temperature is raised by 10 degrees) to compare quantitatively the removal kinetics at 10 and 20°C. Adsorption of toluene and decane onto soil (a phase partitioning process) at 20 and 10°C was described with linear Freundlich isotherms. A temperature decrease from 20 to 10°C resulted in an increase of soil-air partitioning coefficients by a factor of 1.8 and of 2.1 for toluene and decane, respectively. The mean Q10 value for the biodegradation of toluene was found to be 2.2 for a temperature rise from 10 to 20°C. A toluene content in the soil gas above 75% of the saturation concentration inhibited biodegradation at both temperatures. The SBV efficiency was dependent on temperature with respect to remediation time. SBV at 20°C resulted in a 99.8% and a 98.7% reduction of toluene and decane initial concentrations, respectively. To reach similar results at 10°C, about 1.6 times as much time and 1.4 times as much air were required; however, at both temperatures the total amounts of biodegraded hydrocarbons were approximately the same. The evaporation-to-biodegradation ratios at 20°C were 82.5:17.5 for toluene and 16:84 for decane, whereas at 10 °C they were 71:29 and 2:98, respectively. A comparison of Q10 values showed that, except during the initial phase of SBV, only a modest decrease in biodegradation rates should be expected after a decrease in temperature from 20 to 10°C. Flow rate reduction had a significant impact on the toluene evaporation rate at a higher temperature, whereas for decane this rate was only slightly affected by temperature. In contrast to decane, the ratio between toluene vapor pressures at 20 and 10°C may be used to predict the removal of toluene by evaporation during the above-mentioned phases of SBV, when evaporation is important.
The Effect of Temperature on the Bioventing of Soil Contaminated with Toluene and Decane
Malina, G. (author) / Grotenhuis, J. T. C. (author) / Rulkens, W. H. (author)
Journal of Soil Contamination ; 8 ; 455-480
1999-07-01
26 pages
Article (Journal)
Electronic Resource
Unknown
Bioventing of a gasoline-ethanol contaminated undisturbed soil
British Library Conference Proceedings | 2002
|Bioventing with Soil Warming in Alaska
British Library Conference Proceedings | 1992
|THREE DIMENSIONAL SOIL VAPOUR EXTRACTION AND BIOVENTING MODEL
British Library Conference Proceedings | 2005
|The feasibility of using bioventing to remediate fuel oil contaminated soils
British Library Conference Proceedings | 1995
|