A platform for research: civil engineering, architecture and urbanism
Bus running time prediction using a statistical pattern recognition technique
Given that real-time bus arrival information is viewed positively by passengers of public transit, it is useful to enhance the methodological basis for improving predictions. Specifically, data captured and communicated by intelligent systems are to be supplemented by reliable predictive travel time. This paper reports a model for real-time prediction of urban bus running time that is based on statistical pattern recognition technique, namely locally weighted scatter smoothing. Given a pattern that characterizes the conditions for which bus running time is being predicted, the trained model automatically searches through the historical patterns which are the most similar to the current pattern and on that basis, the prediction is made. For training and testing of the methodology, data retrieved from the automatic vehicle location and automatic passenger counter systems of OC Transpo (Ottawa, Canada) were used. A comparison with other methodologies shows enhanced predictive capability.
Bus running time prediction using a statistical pattern recognition technique
Given that real-time bus arrival information is viewed positively by passengers of public transit, it is useful to enhance the methodological basis for improving predictions. Specifically, data captured and communicated by intelligent systems are to be supplemented by reliable predictive travel time. This paper reports a model for real-time prediction of urban bus running time that is based on statistical pattern recognition technique, namely locally weighted scatter smoothing. Given a pattern that characterizes the conditions for which bus running time is being predicted, the trained model automatically searches through the historical patterns which are the most similar to the current pattern and on that basis, the prediction is made. For training and testing of the methodology, data retrieved from the automatic vehicle location and automatic passenger counter systems of OC Transpo (Ottawa, Canada) were used. A comparison with other methodologies shows enhanced predictive capability.
Bus running time prediction using a statistical pattern recognition technique
Vu, Nam H. (author) / Khan, Ata M. (author)
Transportation Planning and Technology ; 33 ; 625-642
2010-10-01
18 pages
Article (Journal)
Electronic Resource
English
Bus running time prediction using a statistical pattern recognition technique
Online Contents | 2010
|A damage assessment technique based on a revised Statistical Pattern-recognition Technique (SPRT)
Online Contents | 2017
|A damage assessment technique based on a revised Statistical Pattern-recognition Technique (SPRT)
Springer Verlag | 2016
|Classification of Damage using Time Series Analysis and Statistical Pattern Recognition
British Library Conference Proceedings | 2008
|British Library Online Contents | 2007
|