A platform for research: civil engineering, architecture and urbanism
Seismic fragility analysis of multi-span steel truss railway bridges in Turkey
In this study, seismic fragility analysis of multi-span steel truss bridges still giving service in railway network of Turkey was aimed. For this purpose, two representative multi-span steel truss bridges were selected in Turkish railway lines. A detailed three-dimensional inelastic finite element (FE) model for each bridge was created using commercial FE software. These models were used to perform non-linear time history analyses for each of the selected 30 ground motions scaled to 10 different peak ground acceleration (PGA) values to assess seismic demands of the bridges. To develop fragility curves, probabilistic seismic demand models (PSDMs) were defined. The most appropriate ground motion intensity measure (IM) for PSDMs of both bridges was determined among 11 IMs and the PGA was found as the optimal IM. Finally, the fragility curves for both the components and structural systems of the bridges were developed. The results clearly showed that the multi-span continuous (MSC) steel truss bridge is more vulnerable than the multi-span simply supported (MSSS) steel truss bridge, and for both bridge types, steel bearings are the most vulnerable components. Additionally, top wind braces for the MSC bridge as well as transverse beams and truss vertical members for the MSSS bridge were found as the most vulnerable superstructure members.
Seismic fragility analysis of multi-span steel truss railway bridges in Turkey
In this study, seismic fragility analysis of multi-span steel truss bridges still giving service in railway network of Turkey was aimed. For this purpose, two representative multi-span steel truss bridges were selected in Turkish railway lines. A detailed three-dimensional inelastic finite element (FE) model for each bridge was created using commercial FE software. These models were used to perform non-linear time history analyses for each of the selected 30 ground motions scaled to 10 different peak ground acceleration (PGA) values to assess seismic demands of the bridges. To develop fragility curves, probabilistic seismic demand models (PSDMs) were defined. The most appropriate ground motion intensity measure (IM) for PSDMs of both bridges was determined among 11 IMs and the PGA was found as the optimal IM. Finally, the fragility curves for both the components and structural systems of the bridges were developed. The results clearly showed that the multi-span continuous (MSC) steel truss bridge is more vulnerable than the multi-span simply supported (MSSS) steel truss bridge, and for both bridge types, steel bearings are the most vulnerable components. Additionally, top wind braces for the MSC bridge as well as transverse beams and truss vertical members for the MSSS bridge were found as the most vulnerable superstructure members.
Seismic fragility analysis of multi-span steel truss railway bridges in Turkey
Yilmaz, Mehmet F. (author) / Ozakgul, Kadir (author) / Caglayan, Barlas O. (author)
Structure and Infrastructure Engineering ; 19 ; 420-437
2022-11-25
18 pages
Article (Journal)
Electronic Resource
Unknown
Seismic Fragility Analysis for Typical Multi-Span Simply Supported Railway Box Girder Bridges
British Library Conference Proceedings | 2017
|Seismic Fragility Analysis for Typical Multi-Span Simply Supported Railway Box Girder Bridges
Trans Tech Publications | 2016
|Long Span Truss Bridges in Seismic Zones
British Library Conference Proceedings | 2003
|