A platform for research: civil engineering, architecture and urbanism
Durability of reclaimed asphalt pavement–coal fly ash–carbide lime blends under severe environmental conditions
The sustainable use of industrial residue in enhancing the long-term performance of reclaimed asphalt pavement (RAP) has been proven to be effective under freeze–thaw and wet–dry conditions. This study focuses on coal fly ash (FA) and carbide lime (CL) as the enhancing agents. It evaluates how the durability and long-term performance of compacted RAP–FA–CL mixtures are impacted by dry unit weight and lime content. The tested mixture’s specimens were moulded in three layers through static compaction inside a cylindrical mould. Several single-level variables were used in the stabilisation process. Among these were: FA content of 25%, optimum water content of 9% (modified effort) and seven days of curing. Additionally, three target dry unit weights (17, 18 and 19 kN/m3 – the last of which was determined using the modified Proctor energy) and three percentages of lime content (3%, 5% and 7%) were used for a comparative analysis. The tested specimens’ accumulated loss of mass (after wetting–drying and freezing–thawing cycles) and splitting tensile strength were both evaluated as a function of the porosity/lime index. The experiments revealed that compacted RAP–coal FA–CL mixtures performed noticeably worse when subjected to freezing–thawing cycles than when subjected to wetting–drying cycles. These results indicate an increase in the breadth of the porosity/lime index, as it is shown to control the long-term performance of compacted RAP–coal FA–CL mixtures, in addition to controlling their mechanical response.
Durability of reclaimed asphalt pavement–coal fly ash–carbide lime blends under severe environmental conditions
The sustainable use of industrial residue in enhancing the long-term performance of reclaimed asphalt pavement (RAP) has been proven to be effective under freeze–thaw and wet–dry conditions. This study focuses on coal fly ash (FA) and carbide lime (CL) as the enhancing agents. It evaluates how the durability and long-term performance of compacted RAP–FA–CL mixtures are impacted by dry unit weight and lime content. The tested mixture’s specimens were moulded in three layers through static compaction inside a cylindrical mould. Several single-level variables were used in the stabilisation process. Among these were: FA content of 25%, optimum water content of 9% (modified effort) and seven days of curing. Additionally, three target dry unit weights (17, 18 and 19 kN/m3 – the last of which was determined using the modified Proctor energy) and three percentages of lime content (3%, 5% and 7%) were used for a comparative analysis. The tested specimens’ accumulated loss of mass (after wetting–drying and freezing–thawing cycles) and splitting tensile strength were both evaluated as a function of the porosity/lime index. The experiments revealed that compacted RAP–coal FA–CL mixtures performed noticeably worse when subjected to freezing–thawing cycles than when subjected to wetting–drying cycles. These results indicate an increase in the breadth of the porosity/lime index, as it is shown to control the long-term performance of compacted RAP–coal FA–CL mixtures, in addition to controlling their mechanical response.
Durability of reclaimed asphalt pavement–coal fly ash–carbide lime blends under severe environmental conditions
Consoli, Nilo Cesar (author) / Scheuermann Filho, Hugo Carlos (author) / Godoy, Vinicius B. (author) / Rosembach, Caroline M. De Carli (author) / Carraro, J. Antonio H. (author)
Road Materials and Pavement Design ; 21 ; 557-569
2020-02-17
13 pages
Article (Journal)
Electronic Resource
English
Resilient Moduli of Reclaimed Asphalt Pavement Aggregate Subbase Blends
Online Contents | 2016
|Resilient Moduli of Reclaimed Asphalt Pavement Aggregate Subbase Blends
British Library Online Contents | 2016
|Durability Performance of Cementitious Mixes with Reclaimed Asphalt Pavement Aggregates
Springer Verlag | 2022
|