A platform for research: civil engineering, architecture and urbanism
Effects of emulsion viscosity during surfactant‐enhanced soil flushing in porous media
Surfactants can potentially improve the efficiency of pump‐and‐treat technology for remediation of aquifers contaminated by nonaqueous phase liquids (NAPLs). However, the formation of emulsions during the removal process can Increase the viscosity in the system. This can result in pore clogging and reduction of flow, which inhibits the contaminant removal process. Formation of viscous emulsions has been identified in previous research as one of the probable causes for in situ field test failures using surfactant‐enhanced soil‐flushing technology. However, the effects of in situ emulsification and viscosity increases have not been quantified previously. The purpose of this article is to investigate effects of in situ emulsification on the remediation process. Laboratory column studies examined the mobilization of m‐xylene from porous media using a 1% alcohol ethoxylate surfactant solution (Witconol® SN90). Effects of in situ emulsification were determined. Glass columns (1.1 cm i.d. × 30 cm) were packed with 0.2‐mm glass beads to model soil media. Viscosities of emulsion solutions prepared with 1 % SN90 and various concentrations of m‐xylene were measured and compared with effluent collected during column‐flushing experiments. It was determined that as m‐xylene concentration in the emulsion solution Increases, viscosity increases. Viscosity increases caused a decrease in relative permeability within the soil column. As a result, the hydraulic gradient required to maintain a constant flowrate of 1.1 ml/min (using a syringe pump) through the soil column increased. Results show that a relatively small increase in viscosity could have a noticeable effect on the mobilization process. It is suggested that the surfactant/contaminant systems be screened to determine emulsion theology and the potential effects on the remediation process. The use of low‐concentration alcohol cosurfactants to reduce system viscosity was evaluated and was shown to be ineffective.
Effects of emulsion viscosity during surfactant‐enhanced soil flushing in porous media
Surfactants can potentially improve the efficiency of pump‐and‐treat technology for remediation of aquifers contaminated by nonaqueous phase liquids (NAPLs). However, the formation of emulsions during the removal process can Increase the viscosity in the system. This can result in pore clogging and reduction of flow, which inhibits the contaminant removal process. Formation of viscous emulsions has been identified in previous research as one of the probable causes for in situ field test failures using surfactant‐enhanced soil‐flushing technology. However, the effects of in situ emulsification and viscosity increases have not been quantified previously. The purpose of this article is to investigate effects of in situ emulsification on the remediation process. Laboratory column studies examined the mobilization of m‐xylene from porous media using a 1% alcohol ethoxylate surfactant solution (Witconol® SN90). Effects of in situ emulsification were determined. Glass columns (1.1 cm i.d. × 30 cm) were packed with 0.2‐mm glass beads to model soil media. Viscosities of emulsion solutions prepared with 1 % SN90 and various concentrations of m‐xylene were measured and compared with effluent collected during column‐flushing experiments. It was determined that as m‐xylene concentration in the emulsion solution Increases, viscosity increases. Viscosity increases caused a decrease in relative permeability within the soil column. As a result, the hydraulic gradient required to maintain a constant flowrate of 1.1 ml/min (using a syringe pump) through the soil column increased. Results show that a relatively small increase in viscosity could have a noticeable effect on the mobilization process. It is suggested that the surfactant/contaminant systems be screened to determine emulsion theology and the potential effects on the remediation process. The use of low‐concentration alcohol cosurfactants to reduce system viscosity was evaluated and was shown to be ineffective.
Effects of emulsion viscosity during surfactant‐enhanced soil flushing in porous media
Crawford, Scott C. (author) / Bruell, Clifford J. (author) / Ryan, David K. (author) / Duggan, John W. (author)
Journal of Soil Contamination ; 6 ; 355-370
1997-07-01
16 pages
Article (Journal)
Electronic Resource
Unknown
Soil clogging during surfactant-enhanced flushing of naphthalene-contaminated sand-kaolinite
Online Contents | 1998
|Soil clogging during surfactant-enhanced flushing of naphthalene-contaminated sand-kaolinite
British Library Online Contents | 1998
|Taylor & Francis Verlag | 2017
|Remediation of Petroleum-Contaminated Loess Soil by Surfactant-Enhanced Flushing Technique
Online Contents | 2005
|