A platform for research: civil engineering, architecture and urbanism
Anticandidal effectiveness of greenly synthesized zinc oxide nanoparticles against candidal pathogens
Drug resistance of pathogenic candidal strains to conventional antifungal agents represents a significant health issue contributing to high morbidity worldwide. Hence, the aim of the current study focused on evaluating the antifungal and synergistic activities of the green synthesized zinc oxide nanoparticles formulated using Laurus nobilis leaf extract. The biogenic ZnONPs were hexagonal in shape with average particle size diameter of 37.98 nm and pure crystalline structure as detected by XRD data. The highest antifungal activity of biogenic ZnONPs was detected against Candida parapsilosis strain demonstrating relative inhibitory zone diameters of 17.13 ± 0.74 and 25.78 ± 0.47 mm, at the concentrations of 100 and 200 µg/disk, respectively. Moreover, the biogenic ZnONPs demonstrated the highest synergistic activity with clotrimazole antifungal agent against Candida glabrata followed by Candida auris strains. MTT assay revealed that the biogenic ZnONPs showed low toxicity demonstrating relative IC50 value of 774.45 µg/mL against normal lung fibroblast cells which further affirmed their biosafety for application. In conclusion, the bioinspired ZnONPs could be utilized for the formulation of effective antifungal agents against drug resistant candidal strains and also could be combined with antifungal agents to boost their antifungal efficiency.
Anticandidal effectiveness of greenly synthesized zinc oxide nanoparticles against candidal pathogens
Drug resistance of pathogenic candidal strains to conventional antifungal agents represents a significant health issue contributing to high morbidity worldwide. Hence, the aim of the current study focused on evaluating the antifungal and synergistic activities of the green synthesized zinc oxide nanoparticles formulated using Laurus nobilis leaf extract. The biogenic ZnONPs were hexagonal in shape with average particle size diameter of 37.98 nm and pure crystalline structure as detected by XRD data. The highest antifungal activity of biogenic ZnONPs was detected against Candida parapsilosis strain demonstrating relative inhibitory zone diameters of 17.13 ± 0.74 and 25.78 ± 0.47 mm, at the concentrations of 100 and 200 µg/disk, respectively. Moreover, the biogenic ZnONPs demonstrated the highest synergistic activity with clotrimazole antifungal agent against Candida glabrata followed by Candida auris strains. MTT assay revealed that the biogenic ZnONPs showed low toxicity demonstrating relative IC50 value of 774.45 µg/mL against normal lung fibroblast cells which further affirmed their biosafety for application. In conclusion, the bioinspired ZnONPs could be utilized for the formulation of effective antifungal agents against drug resistant candidal strains and also could be combined with antifungal agents to boost their antifungal efficiency.
Anticandidal effectiveness of greenly synthesized zinc oxide nanoparticles against candidal pathogens
Maniah, Khalid (author)
Journal of Environmental Science and Health, Part A ; 58 ; 1097-1110
2023-12-06
14 pages
Article (Journal)
Electronic Resource
English
Fabricating curved super-hydrophobic surfaces greenly using recycled polypropylene
British Library Online Contents | 2016
|British Library Online Contents | 2016
|British Library Online Contents | 2015
|British Library Online Contents | 2015
|British Library Online Contents | 2016
|