A platform for research: civil engineering, architecture and urbanism
Microbial communities in uranium mine tailings and mine water sediment from Jaduguda U mine, India: A culture independent analysis
Microbial diversity within uranium mine tailings and mine water sediment from the Jaduguda uranium mine, India was characterized by metagenome-derived 16S rRNA gene clone libraries. Samples from fresh tailings (JFT244), abandoned (vegetated) tailings (JOT245) and mine water sediment (J1-5) having wide ranges of pH (5.7 to 10.4), nitrogen, phosphorus and organic carbon [150–5700 ppm, 800–9100 ppm and 0.18–6.5% (w/w)] and elevated metals (Ni, Cu, Zn and U) were used to explore the inhabitant bacterial and archaeal community structures. Consistent to the sample's physicochemical properties, up to four orders of magnitude variation in bacterial CFU counts was observed. The data showed that with increasing metal and decreasing nutrient (organic C, N, P, etc.) contents, microbial diversity indices decrease within the samples. Culture-independent analyses revealed predominance of phyla Proteobacteria and/or Acidobacteria within the samples along with members of Actinobacteria, Cyanobacteria, Chloroflexi, Genera incertae sedis OP10, Firmicutes and Planctomycete as relatively minor groups. Abundance of Crenarchaeota in tailings samples and Euryachaeota in mine water sediment was noted. Diversity of dissimilatory sulfate reductase gene (dsr) was studied. Putative metabolic properties as derived from taxonomy and phylogenetic lineages indicated presence of chemolithotrophic and heteotrophic aerobic and anaerobic organisms capable of nitrogen fixation, nitrate reduction and biogeochemical cycling of metals, sulfur and methane. The data indicated that indigenous microbial populations are capable of maintaining self-sustenance in these highly hazardous environments and possess catalytic potential for their use in in situ bioremediation.
Microbial communities in uranium mine tailings and mine water sediment from Jaduguda U mine, India: A culture independent analysis
Microbial diversity within uranium mine tailings and mine water sediment from the Jaduguda uranium mine, India was characterized by metagenome-derived 16S rRNA gene clone libraries. Samples from fresh tailings (JFT244), abandoned (vegetated) tailings (JOT245) and mine water sediment (J1-5) having wide ranges of pH (5.7 to 10.4), nitrogen, phosphorus and organic carbon [150–5700 ppm, 800–9100 ppm and 0.18–6.5% (w/w)] and elevated metals (Ni, Cu, Zn and U) were used to explore the inhabitant bacterial and archaeal community structures. Consistent to the sample's physicochemical properties, up to four orders of magnitude variation in bacterial CFU counts was observed. The data showed that with increasing metal and decreasing nutrient (organic C, N, P, etc.) contents, microbial diversity indices decrease within the samples. Culture-independent analyses revealed predominance of phyla Proteobacteria and/or Acidobacteria within the samples along with members of Actinobacteria, Cyanobacteria, Chloroflexi, Genera incertae sedis OP10, Firmicutes and Planctomycete as relatively minor groups. Abundance of Crenarchaeota in tailings samples and Euryachaeota in mine water sediment was noted. Diversity of dissimilatory sulfate reductase gene (dsr) was studied. Putative metabolic properties as derived from taxonomy and phylogenetic lineages indicated presence of chemolithotrophic and heteotrophic aerobic and anaerobic organisms capable of nitrogen fixation, nitrate reduction and biogeochemical cycling of metals, sulfur and methane. The data indicated that indigenous microbial populations are capable of maintaining self-sustenance in these highly hazardous environments and possess catalytic potential for their use in in situ bioremediation.
Microbial communities in uranium mine tailings and mine water sediment from Jaduguda U mine, India: A culture independent analysis
Dhal, Paltu Kumar (author) / Sar, Pinaki (author)
Journal of Environmental Science and Health, Part A ; 49 ; 694-709
2014-05-12
16 pages
Article (Journal)
Electronic Resource
English
Sediment‐Trap evaluation of mine tailings transport
Taylor & Francis Verlag | 1996
|Sediment-Trap Evaluation of Mine Tailings Transport
Online Contents | 1996
|Taylor & Francis Verlag | 1980
|