A platform for research: civil engineering, architecture and urbanism
Numerical simulation of solar-driven Kalina cycle performance for centralized residential buildings in Iran
The building sector is responsible for most of the worldwide electrical energy consumption, having surpassed both the industry and transportation sectors. In this article, a detailed thermodynamic model was proposed for a solar-driven Kalina cycle with an auxiliary superheater to meet the electrical demands of high-rise buildings in Iran’s climatic condition. A combination of correlations characterizing the Gibbs free energy of an ammonia–water mixture was utilized to describe the behaviour of the working fluid. Then an energy analysis of the cycle was studied to solve the system state points as well as the system performance. So its maximum monthly power generation is estimated. A long-term balance is considered between the electricity production and consumption for residential sectors based on the available 10-year recent data for 113 suitable sites. The energy consumption of residential buildings in each province is averaged to calculate the energy consumption of a typical building in that province. Then, the results were shown in terms of solar electrical coverage for each site. The Kalina solar system was able to cover the annual electricity demand of a residential building of at least 20.34% for Hormozgan and at most 164.36% for Isfahan.
Numerical simulation of solar-driven Kalina cycle performance for centralized residential buildings in Iran
The building sector is responsible for most of the worldwide electrical energy consumption, having surpassed both the industry and transportation sectors. In this article, a detailed thermodynamic model was proposed for a solar-driven Kalina cycle with an auxiliary superheater to meet the electrical demands of high-rise buildings in Iran’s climatic condition. A combination of correlations characterizing the Gibbs free energy of an ammonia–water mixture was utilized to describe the behaviour of the working fluid. Then an energy analysis of the cycle was studied to solve the system state points as well as the system performance. So its maximum monthly power generation is estimated. A long-term balance is considered between the electricity production and consumption for residential sectors based on the available 10-year recent data for 113 suitable sites. The energy consumption of residential buildings in each province is averaged to calculate the energy consumption of a typical building in that province. Then, the results were shown in terms of solar electrical coverage for each site. The Kalina solar system was able to cover the annual electricity demand of a residential building of at least 20.34% for Hormozgan and at most 164.36% for Isfahan.
Numerical simulation of solar-driven Kalina cycle performance for centralized residential buildings in Iran
Astaraei, Fatemeh Razi (author) / Sameti, Mohammad (author) / Jokar, Mohammad Ali (author) / Pourfayaz, Fathollah (author)
Intelligent Buildings International ; 10 ; 197-219
2018-10-02
23 pages
Article (Journal)
Electronic Resource
English
Numerical evaluation of the Kalina cycle for concentrating solar power plants
BASE | 2015
|Oxford University Press | 2013
|