A platform for research: civil engineering, architecture and urbanism
Sidewall and non-uniformity corrections for flume experiments
Studying open channel flow and sediment transport in narrow flumes under non-uniform flow conditions, both sidewall and non-uniformity corrections are required for bed-shear stress. This research first reviews conventional predictive methods for bed-shear stress, including the flow-depth method, the hydraulic radius method and Einstein's sidewall correction. It then presents a novel procedure for sidewall and non-uniformity corrections based on a recent cross-sectional velocity distribution model. These methods are compared with data from the log-law under uniform and non-uniform, sub- and supercritical flow conditions, indicating that (i) the flow-depth and the hydraulic radius methods specify the upper and lower bounds for bed-shear stress; (ii) although Einstein's procedure causes a paradox for smooth flumes, it agrees with data from rough beds; and (iii) the proposed is better than Einstein's for subcritical flow, but the latter has advantage for supercritical flow. As an application, sediment inception under non-uniform flow conditions is also discussed.
Sidewall and non-uniformity corrections for flume experiments
Studying open channel flow and sediment transport in narrow flumes under non-uniform flow conditions, both sidewall and non-uniformity corrections are required for bed-shear stress. This research first reviews conventional predictive methods for bed-shear stress, including the flow-depth method, the hydraulic radius method and Einstein's sidewall correction. It then presents a novel procedure for sidewall and non-uniformity corrections based on a recent cross-sectional velocity distribution model. These methods are compared with data from the log-law under uniform and non-uniform, sub- and supercritical flow conditions, indicating that (i) the flow-depth and the hydraulic radius methods specify the upper and lower bounds for bed-shear stress; (ii) although Einstein's procedure causes a paradox for smooth flumes, it agrees with data from rough beds; and (iii) the proposed is better than Einstein's for subcritical flow, but the latter has advantage for supercritical flow. As an application, sediment inception under non-uniform flow conditions is also discussed.
Sidewall and non-uniformity corrections for flume experiments
Guo, Junke (author)
Journal of Hydraulic Research ; 53 ; 218-229
2015-03-04
12 pages
Article (Journal)
Electronic Resource
English
Sidewall and non-uniformity corrections for flume experiments
Online Contents | 2015
|Montana Flume Flow Corrections under Submerged Flow
British Library Online Contents | 2012
|Long Waves in Flume Experiments
ASCE | 1999
|Long Waves in Flume Experiments
British Library Conference Proceedings | 1999
|