A platform for research: civil engineering, architecture and urbanism
A fugacity model for soil vapor extraction
A relatively simple fugacity‐based model is developed for predicting the effectiveness of soil vapor extraction (SVE), an in situ soil remediation technique used for removing volatile organic chemicals from unsaturated soils. The model accounts for the natural processes of volatilization, degradation, and leaching, as well as gas‐phase advection due to SVE. Model predictions are compared with published data for a field‐scale SVE operation. An exponentially declining sweep efficiency for SVE is introduced to improve the fit between simulated and measured soil extraction gas concentrations. The model permits the magnitudes of the various processes affecting the fate and transport of 1,1,1‐trichloroethane (TCA) and perchloroethylene (PCE) in soils to be evaluated. Without SVE, the dominant removal process is biodegradation, but the rate of degradation is low, requiring more than 9 years for soil gas concentrations from a spill of about 13 kg of TCA to be reduced to a concentration of 0. 001 μg/l. The removal time may be reduced to only about 2 years if SVE is used. Moreover, substantially less chemical leaches into the underlying groundwater, greatly reducing the potential extent of ground water contamination.
A fugacity model for soil vapor extraction
A relatively simple fugacity‐based model is developed for predicting the effectiveness of soil vapor extraction (SVE), an in situ soil remediation technique used for removing volatile organic chemicals from unsaturated soils. The model accounts for the natural processes of volatilization, degradation, and leaching, as well as gas‐phase advection due to SVE. Model predictions are compared with published data for a field‐scale SVE operation. An exponentially declining sweep efficiency for SVE is introduced to improve the fit between simulated and measured soil extraction gas concentrations. The model permits the magnitudes of the various processes affecting the fate and transport of 1,1,1‐trichloroethane (TCA) and perchloroethylene (PCE) in soils to be evaluated. Without SVE, the dominant removal process is biodegradation, but the rate of degradation is low, requiring more than 9 years for soil gas concentrations from a spill of about 13 kg of TCA to be reduced to a concentration of 0. 001 μg/l. The removal time may be reduced to only about 2 years if SVE is used. Moreover, substantially less chemical leaches into the underlying groundwater, greatly reducing the potential extent of ground water contamination.
A fugacity model for soil vapor extraction
She, Yuanyin (author) / Sleep, Brent (author) / Mackay, Donald (author)
Journal of Soil Contamination ; 4 ; 227-242
1995-07-01
16 pages
Article (Journal)
Electronic Resource
Unknown
The Fate Simulation of Dioxins in Air-soil System Using the Fugacity Model
British Library Conference Proceedings | 2001
|Fugacity-based Model of NOx within Green Roof Systems
British Library Conference Proceedings | 2007
|Soil vapor extraction technology
Elsevier | 1993
Parameter Identification for Soil Vapor Extraction Model HAIR
British Library Conference Proceedings | 1998
|Soil Vapor Extraction Below a Building
British Library Conference Proceedings | 1994
|