A platform for research: civil engineering, architecture and urbanism
Heating and cooling in high-rise buildings using facade-integrated transparent solar thermal collector systems
New facades of high-rise buildings often include renewable energy converters to allow “green building” operation. At the same time, numerous tenants value visual transparency. Transparent solar thermal collectors (TSTCs) aim at decreasing the non-renewable primary energy demand and increasing the visual transparency at the same time. On the one hand, this paper presents the main modelling challenges that arise when considering building facades and especially integrated TSTC systems. New transient systems simulation (TRNSYS) [Beckman, W. A., L. Broman, A. Fiksel, S. A. Klein, E. Lindberg, M. Schuler, and J. Thornton. 1994. “TRNSYS The Most Complete Solar Energy System Modelling and Simulation Software.” Renewable Energy 5 (1–4): 486–488] types have been especially developed for this purpose. A simplified model is presented for comparison purposes. On the other hand, the overall performance for a building with facade-integrated TSTC, as measured by its non-renewable primary energy demand, is treated. This is achieved by considering a complete simulation model coupling the TSTC, building and heating, ventilation and air conditioning operation. Possibilities for primary energy savings are investigated using the building mass as additional thermal storage.
Heating and cooling in high-rise buildings using facade-integrated transparent solar thermal collector systems
New facades of high-rise buildings often include renewable energy converters to allow “green building” operation. At the same time, numerous tenants value visual transparency. Transparent solar thermal collectors (TSTCs) aim at decreasing the non-renewable primary energy demand and increasing the visual transparency at the same time. On the one hand, this paper presents the main modelling challenges that arise when considering building facades and especially integrated TSTC systems. New transient systems simulation (TRNSYS) [Beckman, W. A., L. Broman, A. Fiksel, S. A. Klein, E. Lindberg, M. Schuler, and J. Thornton. 1994. “TRNSYS The Most Complete Solar Energy System Modelling and Simulation Software.” Renewable Energy 5 (1–4): 486–488] types have been especially developed for this purpose. A simplified model is presented for comparison purposes. On the other hand, the overall performance for a building with facade-integrated TSTC, as measured by its non-renewable primary energy demand, is treated. This is achieved by considering a complete simulation model coupling the TSTC, building and heating, ventilation and air conditioning operation. Possibilities for primary energy savings are investigated using the building mass as additional thermal storage.
Heating and cooling in high-rise buildings using facade-integrated transparent solar thermal collector systems
Maurer, Christoph (author) / Baumann, Thomas (author) / Hermann, Michael (author) / Di Lauro, Paolo (author) / Pavan, Stefano (author) / Michel, Lars (author) / Kuhn, Tilmann E. (author)
Journal of Building Performance Simulation ; 6 ; 449-457
2013-11-01
9 pages
Article (Journal)
Electronic Resource
English
Fraunhofer Publica | 2011
|Clarification of Thermal Characteristics of the Solar Collector Integrated into Transparent Facade
Springer Verlag | 2020
|