A platform for research: civil engineering, architecture and urbanism
Add-on local sweating simulation system for a dry thermal manikin
This study develops an add-on local sweating simulation system to upgrade existing dry thermal manikins to local and sweating thermal manikins. The performance of this system was studied using a dry thermal manikin resembling a human lying on a bed with a ventilated mattress. The system comprises water-repellent porous hollow tubes to discharge water onto a diffusive fabric, as well as a motorized gear pump, DC power supply, relay module, microcomputer, and water container. Using the developed system, we maintained a cyclic steady-state for sweat generation; further, as simulated sweat, the tubes discharge distilled water over a wide area on the surface of a manikin segment covered with fabric. The local evaporative heat loss determined using the manikin roughly agreed with that calculated using the latent heat and water discharge rate, with a difference within 5 W/m2. The humidity in the bed microenvironment was increased via the add-on sweat generation system and decreased via mattress ventilation. A dry thermal manikin with an add-on system is suitable for evaluating local cooling induced by sweating. The system has high repeatability (6% standard deviation); however, the accuracy of the water discharge rate (30%) needs improvement.
Add-on local sweating simulation system for a dry thermal manikin
This study develops an add-on local sweating simulation system to upgrade existing dry thermal manikins to local and sweating thermal manikins. The performance of this system was studied using a dry thermal manikin resembling a human lying on a bed with a ventilated mattress. The system comprises water-repellent porous hollow tubes to discharge water onto a diffusive fabric, as well as a motorized gear pump, DC power supply, relay module, microcomputer, and water container. Using the developed system, we maintained a cyclic steady-state for sweat generation; further, as simulated sweat, the tubes discharge distilled water over a wide area on the surface of a manikin segment covered with fabric. The local evaporative heat loss determined using the manikin roughly agreed with that calculated using the latent heat and water discharge rate, with a difference within 5 W/m2. The humidity in the bed microenvironment was increased via the add-on sweat generation system and decreased via mattress ventilation. A dry thermal manikin with an add-on system is suitable for evaluating local cooling induced by sweating. The system has high repeatability (6% standard deviation); however, the accuracy of the water discharge rate (30%) needs improvement.
Add-on local sweating simulation system for a dry thermal manikin
Nagasawa, Satoru (author) / Sakoi, Tomonori (author) / Melikov, Arsen Krikor (author)
Science and Technology for the Built Environment ; 27 ; 971-985
2021-06-24
15 pages
Article (Journal)
Electronic Resource
Unknown
Characteristic equation and stability determination of sweating manikin
British Library Online Contents | 2006
|Wiley | 2020
|Preparation of skin of thermal manikin Walter with human sweating ratio
British Library Online Contents | 2018
|Ergonomics Simulation of Sweating Thermal Trunk
British Library Online Contents | 2004
|