A platform for research: civil engineering, architecture and urbanism
Predicting Extents of Mercury Oxidation in Coal-Derived Flue Gases
The proposed mercury (Hg) oxidation mechanism consists of a 168-step gas phase mechanism that accounts for interaction among all important flue gas species and a heterogeneous oxidation mechanism on unburned carbon (UBC) particles, similar to established chemistry for dioxin production under comparable conditions. The mechanism was incorporated into a gas cleaning system simulator to predict the proportions of elemental and oxidized Hg species in the flue gases, given relevant coal properties (C/H/O/N/S/Cl/Hg), flue gas composition (O2, H2O, HCl), emissions (NOX, SOX, CO), the recovery of fly ash, fly ash loss-on-ignition (LOI), and a thermal history. Predictions are validated without parameter adjustments against datasets from lab-scale and from pilot-scale coal furnaces at 1 and 29 MWt. Collectively, the evaluations cover 16 coals representing ranks from sub-bituminous through high-volatile bituminous, including cases with Cl2 and CaCl2 injection. The predictions are, therefore, validated over virtually the entire domain of Cl-species concentrations and UBC levels of commercial interest. Additional predictions identify the most important operating conditions in the furnace and gas cleaning system, including stoichiometric ratio, NOX, LOI, and residence time, as well as the most important coal properties, including coal-Cl.
Predicting Extents of Mercury Oxidation in Coal-Derived Flue Gases
The proposed mercury (Hg) oxidation mechanism consists of a 168-step gas phase mechanism that accounts for interaction among all important flue gas species and a heterogeneous oxidation mechanism on unburned carbon (UBC) particles, similar to established chemistry for dioxin production under comparable conditions. The mechanism was incorporated into a gas cleaning system simulator to predict the proportions of elemental and oxidized Hg species in the flue gases, given relevant coal properties (C/H/O/N/S/Cl/Hg), flue gas composition (O2, H2O, HCl), emissions (NOX, SOX, CO), the recovery of fly ash, fly ash loss-on-ignition (LOI), and a thermal history. Predictions are validated without parameter adjustments against datasets from lab-scale and from pilot-scale coal furnaces at 1 and 29 MWt. Collectively, the evaluations cover 16 coals representing ranks from sub-bituminous through high-volatile bituminous, including cases with Cl2 and CaCl2 injection. The predictions are, therefore, validated over virtually the entire domain of Cl-species concentrations and UBC levels of commercial interest. Additional predictions identify the most important operating conditions in the furnace and gas cleaning system, including stoichiometric ratio, NOX, LOI, and residence time, as well as the most important coal properties, including coal-Cl.
Predicting Extents of Mercury Oxidation in Coal-Derived Flue Gases
Niksa, Stephen (author) / Fujiwara, Naoki (author)
Journal of the Air & Waste Management Association ; 55 ; 930-939
2005-07-01
10 pages
Article (Journal)
Electronic Resource
Unknown
Taylor & Francis Verlag | 2005
|Spillway and Dam Foundation Erosion: Predicting Progressive Erosion Extents
British Library Conference Proceedings | 1995
|Oxidation and removal of mercury from flue gases at a hazardous waste incineration facility
British Library Online Contents | 2004
|A Mechanism for Mercury Oxidation in Coal-Derived Exhausts
Taylor & Francis Verlag | 2002
|Degradation of concrete by flue gases from coal combustion
British Library Online Contents | 2007
|