A platform for research: civil engineering, architecture and urbanism
Predicting pavement performance using distress deterioration curves
Highway Authorities in the UK use Surface Condition Assessment for the National Network of Roads (SCANNER) in assessing and managing their road networks. This survey vehicle utilises laser measurements to detect and quantify most of the distress on the road surface, such as rutting, cracking and texture depth. It is however a data intensive and expensive approach since it is conducted annually. This study presents a simple method to predict pavement distress using previous SCANNER measurements. The previous measurements are used to develop Distress Deterioration Master Curves (DDMC) that relate distress deterioration rate with the severity of the distress. These curves can be used to predict future distress severity based on the current state without the need to provide further data such as pavement age or pavement material properties. To demonstrate the application of this method, a significant amount of SCANNER data covering around 400 km of class A roads in Nottinghamshire collected between 2014 and 2020 were analysed, and rutting, crack intensity, and texture depth were modelled in this study. DDMRs of these distress types were built based on data collected between 2014-2018, then 2020 data were used to validate the predictions. The results show that the developed method can be implemented in predicting surface distress of roads using previous measurements, which makes it a valuable addition tool for highway authorities subject to underfunding.
Predicting pavement performance using distress deterioration curves
Highway Authorities in the UK use Surface Condition Assessment for the National Network of Roads (SCANNER) in assessing and managing their road networks. This survey vehicle utilises laser measurements to detect and quantify most of the distress on the road surface, such as rutting, cracking and texture depth. It is however a data intensive and expensive approach since it is conducted annually. This study presents a simple method to predict pavement distress using previous SCANNER measurements. The previous measurements are used to develop Distress Deterioration Master Curves (DDMC) that relate distress deterioration rate with the severity of the distress. These curves can be used to predict future distress severity based on the current state without the need to provide further data such as pavement age or pavement material properties. To demonstrate the application of this method, a significant amount of SCANNER data covering around 400 km of class A roads in Nottinghamshire collected between 2014 and 2020 were analysed, and rutting, crack intensity, and texture depth were modelled in this study. DDMRs of these distress types were built based on data collected between 2014-2018, then 2020 data were used to validate the predictions. The results show that the developed method can be implemented in predicting surface distress of roads using previous measurements, which makes it a valuable addition tool for highway authorities subject to underfunding.
Predicting pavement performance using distress deterioration curves
Abed, Ahmed (author) / Rahman, Mujib (author) / Thom, Nick (author) / Hargreaves, David (author) / Li, Linglin (author) / Airey, Gordon (author)
Road Materials and Pavement Design ; 25 ; 1174-1190
2024-06-02
17 pages
Article (Journal)
Electronic Resource
English
Development of Enhanced Pavement Deterioration Curves
NTIS | 2016
|Predicting Pavement Deterioration Modes Using Waveband Analysis
British Library Conference Proceedings | 1999
|Predicting Pavement Deterioration Modes Using Waveband Analysis
British Library Online Contents | 1999
|