A platform for research: civil engineering, architecture and urbanism
First passage probability estimation of wind turbines by Markov Chain Monte Carlo
Markov Chain Monte Carlo simulation has received considerable attention within the past decade as reportedly one of the most powerful techniques for the first passage probability estimation of dynamic systems. A very popular method in this direction capable of estimating probability of rare events with low computation cost is the subset simulation (SS). The idea of the method is to break a rare event into a sequence of more probable events which are easy to be estimated based on the conditional simulation techniques. Recently, two algorithms have been proposed in order to increase the efficiency of the method by modifying the conditional sampler. In this paper, applicability of the original SS is compared to the recently introduced modifications of the method on a wind turbine model. The model incorporates a PID pitch controller which aims at keeping the rotational speed of the wind turbine rotor equal to its nominal value. Finally Monte Carlo simulations are performed which allow assessment of the accuracy of the first passage probability estimation by the SS methods.
First passage probability estimation of wind turbines by Markov Chain Monte Carlo
Markov Chain Monte Carlo simulation has received considerable attention within the past decade as reportedly one of the most powerful techniques for the first passage probability estimation of dynamic systems. A very popular method in this direction capable of estimating probability of rare events with low computation cost is the subset simulation (SS). The idea of the method is to break a rare event into a sequence of more probable events which are easy to be estimated based on the conditional simulation techniques. Recently, two algorithms have been proposed in order to increase the efficiency of the method by modifying the conditional sampler. In this paper, applicability of the original SS is compared to the recently introduced modifications of the method on a wind turbine model. The model incorporates a PID pitch controller which aims at keeping the rotational speed of the wind turbine rotor equal to its nominal value. Finally Monte Carlo simulations are performed which allow assessment of the accuracy of the first passage probability estimation by the SS methods.
First passage probability estimation of wind turbines by Markov Chain Monte Carlo
Sichani, M.T. (author) / Nielsen, S.R.K. (author)
Structure and Infrastructure Engineering ; 9 ; 1067-1079
2013-10-01
13 pages
Article (Journal)
Electronic Resource
English
First passage probability estimation of wind turbines by Markov Chain Monte Carlo
Online Contents | 2013
|Failure Probability Estimation of Wind Turbines by Enhanced Monte Carlo Method
Online Contents | 2012
Failure Probability Estimation of Wind Turbines by Enhanced Monte Carlo Method
Online Contents | 2012
|Probability-Based Structural Health Monitoring Through Markov Chain Monte Carlo Sampling
Online Contents | 2016
|Transitional Markov Chain Monte Carlo: Observations and Improvements
Online Contents | 2016
|