A platform for research: civil engineering, architecture and urbanism
Quantifying sources of climate uncertainty to inform risk analysis for climate change decision-making
Quantitative estimates of future climate change and its various impacts are often based on complex climate models which incorporate a number of physical processes. As these models continue to become more sophisticated, it is commonly assumed that the latest generation of climate models will provide us with better estimates of climate change. Here, we quantify the uncertainty in future climate change projections using two multi-model ensembles of climate model simulations and divide it into different components: internal, scenario and model. The contributions of these sources of uncertainty changes as a function of variable, temporal and spatial scale and especially lead time in the future. In the new models, uncertainty intervals for each of the components have increased. For temperature, importance of scenario uncertainty is the largest over low latitudes and increases nonlinearly after the mid-century. It has a small importance for precipitation simulations on all time scales, which hampers estimating the effect which any mitigation efforts might have. In line with current state-of-the-art adaptation approaches, we argue that despite these uncertainties climate models can provide useful information to support adaptation decision-making. Moreover, adaptation decisions should not be postponed in the hope that future improved scientific understanding will result in more accurate predictions of future climate change. Such simulations might not become available. On the contrary, while planning adaptation initiatives, a rational framework for decision-making under uncertainty should be employed. We suggest that there is an urgent need for continued development and use of improved risk analysis methods for climate change adaptation.
Quantifying sources of climate uncertainty to inform risk analysis for climate change decision-making
Quantitative estimates of future climate change and its various impacts are often based on complex climate models which incorporate a number of physical processes. As these models continue to become more sophisticated, it is commonly assumed that the latest generation of climate models will provide us with better estimates of climate change. Here, we quantify the uncertainty in future climate change projections using two multi-model ensembles of climate model simulations and divide it into different components: internal, scenario and model. The contributions of these sources of uncertainty changes as a function of variable, temporal and spatial scale and especially lead time in the future. In the new models, uncertainty intervals for each of the components have increased. For temperature, importance of scenario uncertainty is the largest over low latitudes and increases nonlinearly after the mid-century. It has a small importance for precipitation simulations on all time scales, which hampers estimating the effect which any mitigation efforts might have. In line with current state-of-the-art adaptation approaches, we argue that despite these uncertainties climate models can provide useful information to support adaptation decision-making. Moreover, adaptation decisions should not be postponed in the hope that future improved scientific understanding will result in more accurate predictions of future climate change. Such simulations might not become available. On the contrary, while planning adaptation initiatives, a rational framework for decision-making under uncertainty should be employed. We suggest that there is an urgent need for continued development and use of improved risk analysis methods for climate change adaptation.
Quantifying sources of climate uncertainty to inform risk analysis for climate change decision-making
Ylhäisi, Jussi S. (author) / Garrè, Luca (author) / Daron, Joseph (author) / Räisänen, Jouni (author)
Local Environment ; 20 ; 811-835
2015-07-03
25 pages
Article (Journal)
Electronic Resource
English
Editorial: Climate Change and Variability, Uncertainty and Decision-Making (ev960111)
Online Contents | 1997
|Climate Scenarios and Decision Making under Uncertainty
Online Contents | 2007
|Near Term Decision Making Under Climate Uncertainty
British Library Conference Proceedings | 1999
|