A platform for research: civil engineering, architecture and urbanism
Effect of sand on the vacuum consolidation of dredged slurry
Vacuum preloading is often used to improve the geotechnical properties of dredged slurry. Although the performance of this method has improved with rapidly developing technology, soil columns usually formed on the drainage boundary induce the decrease of permeability around the boundary, thereby limiting the further development of this method. To address this issue, this paper proposes a method for pretreating the slurry combined with sand prior to vacuum consolidation. This method partially replaces the fine particles with sand to reduce the formation of soil columns. Two groups of vacuum preloading tests were performed to investigate the effect of sand content and sand grain size on the vacuum consolidation of dredged slurry. The test results revealed that for a given sand grain size, increasing the sand content of the sand–slurry mixture increased the pore water drainage and accelerated the dissipation of pore water pressure, thereby increasing the vane shear strength. In contrast, for a constant sand content, the samples containing coarse sand exhibited increased pore water drainage and accelerated dissipation of pore water pressure, thereby increasing the vane shear strength of the soil.
Effect of sand on the vacuum consolidation of dredged slurry
Vacuum preloading is often used to improve the geotechnical properties of dredged slurry. Although the performance of this method has improved with rapidly developing technology, soil columns usually formed on the drainage boundary induce the decrease of permeability around the boundary, thereby limiting the further development of this method. To address this issue, this paper proposes a method for pretreating the slurry combined with sand prior to vacuum consolidation. This method partially replaces the fine particles with sand to reduce the formation of soil columns. Two groups of vacuum preloading tests were performed to investigate the effect of sand content and sand grain size on the vacuum consolidation of dredged slurry. The test results revealed that for a given sand grain size, increasing the sand content of the sand–slurry mixture increased the pore water drainage and accelerated the dissipation of pore water pressure, thereby increasing the vane shear strength. In contrast, for a constant sand content, the samples containing coarse sand exhibited increased pore water drainage and accelerated dissipation of pore water pressure, thereby increasing the vane shear strength of the soil.
Effect of sand on the vacuum consolidation of dredged slurry
Wang, Jun (author) / Cai, Yuanqiang (author) / Ni, Junfeng (author) / Geng, Xueyu (author) / Xu, Fengqi (author)
Marine Georesources & Geotechnology ; 36 ; 238-244
2018-02-17
7 pages
Article (Journal)
Electronic Resource
English
Vacuum consolidation theory of dredged slurry considering nonlinear clogging behaviors
Taylor & Francis Verlag | 2024
|Improved Vacuum Preloading Method for Consolidation of Dredged Clay-Slurry Fill
Online Contents | 2016
|Improved Vacuum Preloading Method for Consolidation of Dredged Clay-Slurry Fill
Online Contents | 2016
|