A platform for research: civil engineering, architecture and urbanism
Destructive and Non Destructive Test Characteristics of Concrete Produced with Iron Slag Aggregate
The Ground granulated Blast furnace slag (GGBFS) is a waste of industrial materials; it is relatively more recent pozzolanic material that has received considerable attention in both research and application. In the present investigation, Blast Furnace Slag from local industries has been utilized to find its suitability as a coarse aggregate in self-compacting concrete (SCC) making. Replacing all or some portion of natural aggregates with slag would lead to considerable environmental benefits. SCC mixes were designed and coarse aggregates were replaced by 0, 20, 40, 60, 80, and 100% steel slag by weight. Tests were conducted to assess the fresh properties, strength properties and durability behavior (permeability) of SCC. Properties such as slump flow, flow diameter, passing ability, segregation resistance, compressive strength, and both rebound number and ultrasonic pulse velocity were measured. In addition, the relationship between compressive strength and rebound number as well as ultra-sonic pulse velocity (UPV) was discussed. Splitting tensile strength, flexural strength, and permeability were also examined. The results indicate that the mixture of 60% replacement (SCC-SA60) was selected as the optimum mixture in which compressive strength, splitting tensile strength, and flexural strength increased by 5%, 35%, and 10%, respectively. Permeability increased with increasing the steel slag content. The results also illustrated that there is a significant relationship between compressive strength and UPV as well as rebound number for the SCC mixes.
Destructive and Non Destructive Test Characteristics of Concrete Produced with Iron Slag Aggregate
The Ground granulated Blast furnace slag (GGBFS) is a waste of industrial materials; it is relatively more recent pozzolanic material that has received considerable attention in both research and application. In the present investigation, Blast Furnace Slag from local industries has been utilized to find its suitability as a coarse aggregate in self-compacting concrete (SCC) making. Replacing all or some portion of natural aggregates with slag would lead to considerable environmental benefits. SCC mixes were designed and coarse aggregates were replaced by 0, 20, 40, 60, 80, and 100% steel slag by weight. Tests were conducted to assess the fresh properties, strength properties and durability behavior (permeability) of SCC. Properties such as slump flow, flow diameter, passing ability, segregation resistance, compressive strength, and both rebound number and ultrasonic pulse velocity were measured. In addition, the relationship between compressive strength and rebound number as well as ultra-sonic pulse velocity (UPV) was discussed. Splitting tensile strength, flexural strength, and permeability were also examined. The results indicate that the mixture of 60% replacement (SCC-SA60) was selected as the optimum mixture in which compressive strength, splitting tensile strength, and flexural strength increased by 5%, 35%, and 10%, respectively. Permeability increased with increasing the steel slag content. The results also illustrated that there is a significant relationship between compressive strength and UPV as well as rebound number for the SCC mixes.
Destructive and Non Destructive Test Characteristics of Concrete Produced with Iron Slag Aggregate
Alharthy, Samiha E. (author)
Water Science ; 35 ; 186-194
2021-01-01
9 pages
Article (Journal)
Electronic Resource
Unknown
Non-Destructive Testing of Concrete with Fine Recycled Aggregate
Trans Tech Publications | 2016
|Destructive and non-destructive evaluation of concrete for optimum sand to aggregate volume ratio
Springer Verlag | 2021
|Evaluating the Properties of Demolished Aggregate Concrete with Non-destructive Assessment
Springer Verlag | 2021
|The early age non-destructive testing of concrete made with recycled concrete aggregate
Online Contents | 2012
|Destructive and Non-Destructive Assessment of Concrete Structures
British Library Conference Proceedings | 2002
|