A platform for research: civil engineering, architecture and urbanism
Carbonate gravelly soils are widely distributed in sub-tropical marine areas. During construction and engineering operations, carbonate gravel undergoes considerable particle crushing, which has remarkable effects on their engineering properties. A series of large-diameter oedometer tests, large-diameter drained and undrained triaxial shear tests were conducted on carbonate gravel specimens taken from the South China Sea. The carbonate gravel specimens exhibit significant particle crushing at common engineering pressure levels, and the particle crushing highly depends on the initial density, loading history and stress path. Three fragmentation modes, fracture, attrition, and abrasion, are notable in carbonate gravel specimens, which induces significant variations of PSD curves and greatly effects the mechanical properties. Particle crushing in carbonate gravel specimens increases the compressibility resulting in the compression index increases with the increase of surcharge pressure; decreases the pressure-hardening resulting in the initial Young’s and secant moduli slightly increase with the increase of initial confining pressure; and decreases the dilatancy resulting in the peak and critical state friction angles significantly deceases with the increase of initial confining pressure. Particle crushing also shows great effect on the CSL of the carbonate gravel specimens in both - q space and e - space.
Carbonate gravelly soils are widely distributed in sub-tropical marine areas. During construction and engineering operations, carbonate gravel undergoes considerable particle crushing, which has remarkable effects on their engineering properties. A series of large-diameter oedometer tests, large-diameter drained and undrained triaxial shear tests were conducted on carbonate gravel specimens taken from the South China Sea. The carbonate gravel specimens exhibit significant particle crushing at common engineering pressure levels, and the particle crushing highly depends on the initial density, loading history and stress path. Three fragmentation modes, fracture, attrition, and abrasion, are notable in carbonate gravel specimens, which induces significant variations of PSD curves and greatly effects the mechanical properties. Particle crushing in carbonate gravel specimens increases the compressibility resulting in the compression index increases with the increase of surcharge pressure; decreases the pressure-hardening resulting in the initial Young’s and secant moduli slightly increase with the increase of initial confining pressure; and decreases the dilatancy resulting in the peak and critical state friction angles significantly deceases with the increase of initial confining pressure. Particle crushing also shows great effect on the CSL of the carbonate gravel specimens in both - q space and e - space.
Mechanical behavior and particle crushing of marine carbonate gravel in Xisha Islands, South China Sea
Wei, Xing (author)
European Journal of Environmental and Civil Engineering ; 28 ; 973-992
2024-03-11
20 pages
Article (Journal)
Electronic Resource
English
Corrosion Behavior of 7A04 Aluminium alloy in Xisha Marine Atmosphere
British Library Online Contents | 2013
|British Library Conference Proceedings | 2015
|Quasi-Geoid Near Xisha Islands by the Geo-Potential Propagating Technique
Online Contents | 2012
|