A platform for research: civil engineering, architecture and urbanism
Effect of diffusion limitation and substrate inhibition on steady states of a biofilm reactor treating a single pollutant
The occurrence of multiple steady states in a toluene biodegrading, diffusion-limited biofilm under aerobic conditions was investigated by computer models: one steady-state, and one nonsteady-state. Two stable and one unstable intermediate steady-state were identified in a narrow set of combinations of parameters values. The nonsteady-state model predicts conditions that evolve to a steady state that is within 0.02–1% of the solution of the steady-state model, depending on the number of grid points used, confirming the algorithms are valid. Multiple steady states occur if, (1) a biofilm is exposed to a constant gas-phase pollution concentration, which exceeds or undershoots a certain threshold, (2) in a narrow range of parameter values and (3) provided that the pollutant degradation follows Haldane kinetics. Such a biofilm displays half-saturation (i.e., Michaelis-Menten)-like apparent (“falsified”) kinetics from a concentration range starting at zero up to the occurrence of a second steady state. Multiple steady states and falsified kinetics can negatively affect a biofilter and the experimental determination of kinetic parameters, respectively.
Implications: The occurrence of multiple steady states in a VOC treating biofilm, shows the significant impact of degradation kinetics and diffusion limitation on the biofilm behavior. Moreover, the implied possible sudden drop of removal efficiency of a biofilter, based on the occurrence of multiple steady states lead to possible bottle-necks in biofilter application and operation.
Effect of diffusion limitation and substrate inhibition on steady states of a biofilm reactor treating a single pollutant
The occurrence of multiple steady states in a toluene biodegrading, diffusion-limited biofilm under aerobic conditions was investigated by computer models: one steady-state, and one nonsteady-state. Two stable and one unstable intermediate steady-state were identified in a narrow set of combinations of parameters values. The nonsteady-state model predicts conditions that evolve to a steady state that is within 0.02–1% of the solution of the steady-state model, depending on the number of grid points used, confirming the algorithms are valid. Multiple steady states occur if, (1) a biofilm is exposed to a constant gas-phase pollution concentration, which exceeds or undershoots a certain threshold, (2) in a narrow range of parameter values and (3) provided that the pollutant degradation follows Haldane kinetics. Such a biofilm displays half-saturation (i.e., Michaelis-Menten)-like apparent (“falsified”) kinetics from a concentration range starting at zero up to the occurrence of a second steady state. Multiple steady states and falsified kinetics can negatively affect a biofilter and the experimental determination of kinetic parameters, respectively.
Implications: The occurrence of multiple steady states in a VOC treating biofilm, shows the significant impact of degradation kinetics and diffusion limitation on the biofilm behavior. Moreover, the implied possible sudden drop of removal efficiency of a biofilter, based on the occurrence of multiple steady states lead to possible bottle-necks in biofilter application and operation.
Effect of diffusion limitation and substrate inhibition on steady states of a biofilm reactor treating a single pollutant
Süß, Michael (author) / De Visscher, Alex (author)
Journal of the Air & Waste Management Association ; 69 ; 1107-1115
2019-09-02
9 pages
Article (Journal)
Electronic Resource
English
Prediction of Oxygen Limitation in an Aerobic Biofilm Reactor
Online Contents | 1996
|A simplified model for the steady-state biofilm-activated sludge reactor
Online Contents | 2005
Experimental scale effect of pollutant diffusion/dispersion in rivers
British Library Conference Proceedings | 2005
|BASE | 2023
|