A platform for research: civil engineering, architecture and urbanism
On-Site Treatment of Contaminated Soils: An Approach to Bioremediation of Weathered Petroleum Compounds
A bench-scale investigation was conducted prior to on-site bioremediation of 52,000 cubic yards of contaminated soil containing weathered, structurally complex petroleum compounds from an inactive oil refinery. Addition of bulking agents was required to improve soil physical properties. A supplemental study was also conducted to evaluate the effectiveness of bio-enhancement products. Loss of n-alkanes was rapid in soil mixtures containing a high nitrogen sludge compost, but very slow in mixtures containing wood products as bulking agents. By completion of the study at day 110, the isoprenoids pristane and phytane had nearly disappeared from mixtures containing sludge compost. Clearly, pristane and phytane are inadequate biomarkers when conditions favor an advanced stage of biodegradation. Nearly half the complex branched and cyclic alkanes in the unresolved complex mixture also degraded. After 70 days, depletion of dibenzo-thiophenes and phenan-threnes was 75 and 90%, respectively. The most stable PAHs within each group were the highly methylated homologues. Because of their complex structures, both steranes and hopanes were stable in all soil mixtures. Data were normalized to hopanes as a conserved internal standard or biomarker. Use of hopane-normalized data successfully eliminated much of the data variability and permitted a more accurate assessment of biodegradation. A relatively slow decline in total hydrocarbons occurred later in the study. This slowing tendency of microbial utilization is caused not only by substrate depletion, but also because remaining hydrocarbons are structurally more complex and persistent. Because of this, it is important to avoid using kinetic data from early stages of bioremediation to predict later hydrocarbon losses, such as the time required to attain a cleanup standard. In the supplemental study, an oleophilic fertilizer product accelerated hydrocarbon degradation when compared with a conventional fertilizer. This product will be tested in combination with organic bulking agents under field conditions to determine its cost effectiveness.
On-Site Treatment of Contaminated Soils: An Approach to Bioremediation of Weathered Petroleum Compounds
A bench-scale investigation was conducted prior to on-site bioremediation of 52,000 cubic yards of contaminated soil containing weathered, structurally complex petroleum compounds from an inactive oil refinery. Addition of bulking agents was required to improve soil physical properties. A supplemental study was also conducted to evaluate the effectiveness of bio-enhancement products. Loss of n-alkanes was rapid in soil mixtures containing a high nitrogen sludge compost, but very slow in mixtures containing wood products as bulking agents. By completion of the study at day 110, the isoprenoids pristane and phytane had nearly disappeared from mixtures containing sludge compost. Clearly, pristane and phytane are inadequate biomarkers when conditions favor an advanced stage of biodegradation. Nearly half the complex branched and cyclic alkanes in the unresolved complex mixture also degraded. After 70 days, depletion of dibenzo-thiophenes and phenan-threnes was 75 and 90%, respectively. The most stable PAHs within each group were the highly methylated homologues. Because of their complex structures, both steranes and hopanes were stable in all soil mixtures. Data were normalized to hopanes as a conserved internal standard or biomarker. Use of hopane-normalized data successfully eliminated much of the data variability and permitted a more accurate assessment of biodegradation. A relatively slow decline in total hydrocarbons occurred later in the study. This slowing tendency of microbial utilization is caused not only by substrate depletion, but also because remaining hydrocarbons are structurally more complex and persistent. Because of this, it is important to avoid using kinetic data from early stages of bioremediation to predict later hydrocarbon losses, such as the time required to attain a cleanup standard. In the supplemental study, an oleophilic fertilizer product accelerated hydrocarbon degradation when compared with a conventional fertilizer. This product will be tested in combination with organic bulking agents under field conditions to determine its cost effectiveness.
On-Site Treatment of Contaminated Soils: An Approach to Bioremediation of Weathered Petroleum Compounds
Brown, James L. (author) / Syslo, John (author) / Lin, Yi-Hua (author) / Getty, Sam (author) / Vemuri, Ramu (author) / Nadeau, Royal (author)
Journal of Soil Contamination ; 7 ; 773-800
1998-11-01
28 pages
Article (Journal)
Electronic Resource
Unknown
Enzymes for Enhancing Bioremediation of Petroleum-Contaminated Soils: A Brief Review
Taylor & Francis Verlag | 1995
|The effect of soil type on the bioremediation of petroleum contaminated soils
Online Contents | 2016
|Factors inhibiting bioremediation of soil contaminated with weathered oils and drill cuttings
Online Contents | 2006
|Evaluation of Bioremediation of Petroleum Contaminated Soil
British Library Conference Proceedings | 1998
|