A platform for research: civil engineering, architecture and urbanism
Computational study of breathing methods for inhalation exposure
This research uses an experimentally validated computational fluid dynamics model that includes a personal ventilation system, seated thermal manikin, and floor diffuser to assess the effect of breathing methods on two cases with personal ventilation systems and one without personal ventilation. The personal ventilation systems include a single round jet and a novel low-mixing co-flow nozzle that directs fresh air toward the breathing zone. First, experimental and computational air quality results were compared for the nostril and mouth using the same setup. Then, the effect of breathing on air quality profiles was determined and compared to experimental data. Next, the intake fraction was compared for the three cases when modeling four different breathing methods. The breathing methods include steady-state no breathing, steady-state inhalation, unsteady sinusoidal breathing, and an unsteady realistic profile. Based on the intake fraction, the results show that most breathing methods gave the same results within 2–3% for each case. Using an area average over a nostril is not an adequate breathing simulation method. From this, it is recommended that steady inhalation is used to simulate breathing in computational studies because it does not increase the complexity of the simulation and makes post-processing easier.
Computational study of breathing methods for inhalation exposure
This research uses an experimentally validated computational fluid dynamics model that includes a personal ventilation system, seated thermal manikin, and floor diffuser to assess the effect of breathing methods on two cases with personal ventilation systems and one without personal ventilation. The personal ventilation systems include a single round jet and a novel low-mixing co-flow nozzle that directs fresh air toward the breathing zone. First, experimental and computational air quality results were compared for the nostril and mouth using the same setup. Then, the effect of breathing on air quality profiles was determined and compared to experimental data. Next, the intake fraction was compared for the three cases when modeling four different breathing methods. The breathing methods include steady-state no breathing, steady-state inhalation, unsteady sinusoidal breathing, and an unsteady realistic profile. Based on the intake fraction, the results show that most breathing methods gave the same results within 2–3% for each case. Using an area average over a nostril is not an adequate breathing simulation method. From this, it is recommended that steady inhalation is used to simulate breathing in computational studies because it does not increase the complexity of the simulation and makes post-processing easier.
Computational study of breathing methods for inhalation exposure
Russo, Jackie Sue (author) / Khalifa, Ezzat (author)
HVAC&R Research ; 17 ; 419-431
2011-08-01
13 pages
Article (Journal)
Electronic Resource
Unknown
Inhalation exposure to THMS from drinking water
British Library Conference Proceedings | 1999
|Low re-inhalation of the exhaled flow during normal nasal breathing in a pediatric airway replica
Online Contents | 2016
|Inhalation exposure of children to fragrances present in scented toys
Online Contents | 2011
|