A platform for research: civil engineering, architecture and urbanism
The paper presents the results of research on the utilization of phosphogypsum produced as the waste of phosphoric acid manufacture. Phosphogypsum is a fine powder with high calcium sulfate content. The phosphatic and fluoride impurities present in phosphogypsum cannot be removed completely either by washing or chemical treatments. However, phosphogypsum, when heated at elevated temperature, produced an anhydrite and the impurities become inert. The formation of anhydrite cement was examined by microscopy and X-ray diffraction. Data showed that a stable anhydrite can be produced by heating phosphogypsum at 1000 degree C. The effects of different chemicals on setting and hardening of anhydrite cement and its hydration characteristics were studied. Results show that with the use of sodium sulfate and ferrous sulfate activators, maximum attainment of strength can be achieved. A correlation was established between hydration and chemically combined water. Microscopic studies revealed that formation of euhedral prismatic and rhombic shaped gypsum crystals govern high strength development in the anhydrite cement. Manufacture of anhydrite cement from phosphogypsum is recommended because of its lower energy requirements than the traditional building materials.
The paper presents the results of research on the utilization of phosphogypsum produced as the waste of phosphoric acid manufacture. Phosphogypsum is a fine powder with high calcium sulfate content. The phosphatic and fluoride impurities present in phosphogypsum cannot be removed completely either by washing or chemical treatments. However, phosphogypsum, when heated at elevated temperature, produced an anhydrite and the impurities become inert. The formation of anhydrite cement was examined by microscopy and X-ray diffraction. Data showed that a stable anhydrite can be produced by heating phosphogypsum at 1000 degree C. The effects of different chemicals on setting and hardening of anhydrite cement and its hydration characteristics were studied. Results show that with the use of sodium sulfate and ferrous sulfate activators, maximum attainment of strength can be achieved. A correlation was established between hydration and chemically combined water. Microscopic studies revealed that formation of euhedral prismatic and rhombic shaped gypsum crystals govern high strength development in the anhydrite cement. Manufacture of anhydrite cement from phosphogypsum is recommended because of its lower energy requirements than the traditional building materials.
Making of anhydrite cement from waste gypsum
Cement and Concrete Research ; 30 ; 571-577
2000
7 Seiten, 28 Quellen
Article (Journal)
English
Making of anhydrite cement from waste gypsum
British Library Online Contents | 2000
|Gypsum & anhydrite in portland cement
TIBKAT | 1969
|Chemistry and manufacture of gypsum-anhydrite cement
Engineering Index Backfile | 1934
|Engineering Index Backfile | 1958
|Engineering Index Backfile | 1939
|