A platform for research: civil engineering, architecture and urbanism
Demonstrating effectiveness of passive radon-resistant new construction
Fifty percent of homes tested for radon in Rock Island County, IL, have radon levels above the U.S. Environmental Protection Agency (EPA) action guideline of 4 picoCuries per liter (pCi/L) of air. Therefore, the county is classified by the EPA as Zone 1 on the EPA's Map of Radon Potential. Radon-resistant new construction (RRNC) strategies for new homes are recommended by the EPA in Zone 1 areas. One city in the county, East Moline, reduced the cost of building permits for contractors volunteering to build new homes incorporating modified passive RRNC. Forty-six of 124 new homes built with passive RRNC in the city were tested during this study. Only 27 of the homes tested were below 4-pCi/L, justifying the importance of testing the system to ensure levels are below the action guideline. To provide additional support to an argument in favor of changing city building codes to the required RRNC, 23 of the homes were also tested with the systems deactivated. After systems were deactivated, 73% of the homes had radon levels above the action guideline. Four homes were sampled for bioaerosols to evaluate if passive RRNC might impact other indicators of poor indoor air quality (IAQ). The results of the research will be discussed here.
Demonstrating effectiveness of passive radon-resistant new construction
Fifty percent of homes tested for radon in Rock Island County, IL, have radon levels above the U.S. Environmental Protection Agency (EPA) action guideline of 4 picoCuries per liter (pCi/L) of air. Therefore, the county is classified by the EPA as Zone 1 on the EPA's Map of Radon Potential. Radon-resistant new construction (RRNC) strategies for new homes are recommended by the EPA in Zone 1 areas. One city in the county, East Moline, reduced the cost of building permits for contractors volunteering to build new homes incorporating modified passive RRNC. Forty-six of 124 new homes built with passive RRNC in the city were tested during this study. Only 27 of the homes tested were below 4-pCi/L, justifying the importance of testing the system to ensure levels are below the action guideline. To provide additional support to an argument in favor of changing city building codes to the required RRNC, 23 of the homes were also tested with the systems deactivated. After systems were deactivated, 73% of the homes had radon levels above the action guideline. Four homes were sampled for bioaerosols to evaluate if passive RRNC might impact other indicators of poor indoor air quality (IAQ). The results of the research will be discussed here.
Demonstrating effectiveness of passive radon-resistant new construction
LaFollette, S. (author) / Dickey, T. (author)
Journal of the Air and Waste Management Association ; 51 ; 102-108
2001
7 Seiten, 14 Quellen
Article (Journal)
English
Demonstrating Effectiveness of Passive Radon-Resistant New Construction
Taylor & Francis Verlag | 2001
|Regional Influences of Construction on the Effectiveness of Radon Control
British Library Conference Proceedings | 1989
|Demonstrating Construction Productivity Using CPCG
British Library Conference Proceedings | 2007
|Radon pollution in Passive Houses
British Library Conference Proceedings | 2010
|