A platform for research: civil engineering, architecture and urbanism
Ein wellenbasiertes stochastisches Modell zur Vorhersage der Erdbebenlast
Starke Erdbeben stellen weltweit ein hohes Risiko für urbane Zentren dar, dem unter anderem durch Methoden der aseismischen Bauwerksbemessung begegnet wird. Grundlage hierfür bilden Annahmen und Erfahrungswissen über die lokale seismische Bodenbeschleunigung, Grenzen sind hingegen durch die zusätzlichen Kosten gesetzt. Die Schadensbilanz der Starkbeben der letzten Jahre, auch in den Industrieländern, verdeutlicht die Notwendigkeit, die Konzepte und Methoden des erdbebensicheren Bauens weiter zu verfeinern. In dieser Arbeit wird ein neuer Ansatz zur stochastischen seismischen Lastmodellierung vorgestellt, der über die übliche Annahme eines stationären, eindimensionalen Prozesses für die Bodenbeschleunigung hinausgeht. Ziel ist eine standort- und wellenspezifische räumliche Lastmodellierung, die durch Nutzung von Informationen über physikalische Invarianten eine transparente und kostengünstige aseismische Bauwerksbemessung erlaubt, zumindest aber das Risiko gegenüber gebräuchlichen Bemessungsmethoden reduziert. Solche seismischen und geotechnischen Invarianten sind die gesetzmäßige Struktur des seismischen Wellenfeldes sowie die Resonanzeigenschaften der Bodenschichtung am Standort. Das vorgeschlagene Lastmodell bildet das Wellenfeld am Standort als Komposition stochastischer evolutionärer Teilprozesse auf zeitveränderlichen Hauptachsen ab, die zu Wellenzügen mit jeweils spezifischer Lastcharakteristik korrespondieren. Diese Lastcharakteristik wird sowohl im Frequenz- und Zeitbereich als auch räumlich durch wellenspezifische Formfunktionen beschrieben, deren Parameter stark zu seismischen und geotechnischen Größen korrelieren. Schwerpunkt der Arbeit sind neuartige, korrelationsbasierte Schätzverfahren zur empirischen Spezifikation der Modellparameter für die Baupraxis. Das SAPCA ()spektraladaptive Korrelations-Hauptachsenschätzverfahren (SAPCA) sichert die optimale Erfassung der räumlichen Wellenzüge durch Transformation der Messung auf Referenzkomponenten. Gleichzeitig liefert es - in Verbindung mit einem Korrekturverfahren für den Streichwinkel der Hauptachse - prägnante, assoziierte Hauptachsenverlaufsmuster, anhand derer Dominanzphasen für drei verallgemeinerte Wellenzüge zuverlässig identifiziert werden können. Innerhalb dieser Dominanzphasen werden die wellenzugspezifischen Parameter des Lastmodells bestimmt. Außerdem wird ein Algorithmus angegeben, um Rayleighwellen in Einzelmessungen zu identifizieren. Die Eignung des Modellansatzes und die Effizienz der Schätzverfahren werden anhand von Starkbebenmessungen des Northridge-Erdbebens 1994 verifiziert. Mit dem vorgestellten nichtstationären Modellansatz werden in herkömmlichen stochastischen Lastmodellen unterschätzte Lastanteile des Starkbebenwellenfeldes genauer abgebildet. Bisher unterschlagene oder pauschal modellierte Lastanteile werden erstmals der Analyse und Modellierung zugänglich gemacht. Das stochastische Modell wird bezüglich der wichtigsten lastgenerierenden Effekte physikalisch transparent und dadurch - trotz höherer Komplexität - in der Ingenieurpraxis besser handhabbar. Die Hauptachsenmethode (SAPCA) eignet sich auch für seismologische Analysen im Nahbereich, etwa zur Analyse von Bruchprozessen und topographischen Standorteffekten.
Strong earthquakes are a potential high risk for urban centres worldwide, which is, amongst others, confronted by methods of aseismic structural design. This is based on both assumptions and thorough knowledge about local seismic ground acceleration; limits are set, on the other side, by additional costs. Damage balance of recent strong quakes - also in industrialized countries - emphasize the need for further refinement of concepts and methods of earthquake resistant structural design. In this work, a new approach of stochastic seismic load modelling is presented, letting go the usual presupposition of a stationary, one-dimensional stochastic process for ground acceleration. The goal is site and wave specific load modelling, using information about physical and geotechnical invariants, which enables transparency and low cost approaches in aseismic structural design, but at least reduces seismic risk in comparison to common design methods. Those physical and geotechnical invariants are the structure of the seismic wave field according to physical laws as well as resonance properties of the soil strata at the local site. The proposed load model represents the local wave field as a composition of stochastic evolutionary sub-processes upon time-variant principal axes, which correspond to wave trains with specific load characteristics. Those load characteristics are described in the frequency and time as well as in the spatial domain by wave-specific shape functions, whose parameters strongly correlate to seismic and geotechnical entities. Main contributions of the work are newly developed estimation procedures based on correlation, which serve in the framework of empirical specification of the model parameters for the building practice. The Spectral-Adaptive Principal Correlation Axes (SAPCA) algorithm ensures an optimal covering of the spatial wave trains by transforming the recorded data onto Reference Components. At the same time - in connection with a correction algorithm for the strike angle of the principal axis - it delivers concise associated patterns in the course of the principal axis, which are in turn used to reliably identify dominance phases for three generalized wave trains. Within those wave dominance phases, the wave specific parameters of the load model are determined. Additionally, an algorithm is presented to identify Rayleigh waves in single site acceleration records. Adequacy of the modelling approach and efficiency of the estimation procedures are verified by means of strong motion records from the 1994 Northridge Earthquake The proposed non-stationary modelling approach describes with more accuracy load portions of the strong motion wave field underestimated in conventional stochastic load models. Load portions which are left out or lump-sum modelled so far are made available for analysis and modelling for the first time. The stochastic model gains physical transparency with respect to the most important load generating effects, and hence will be - despite higher complexity - easy to handle in engineering practice. The Principal Axis method will also be useful for seismological analyses in the near field, e.g., for the analysis of rupture processes and topographic site effects.
Ein wellenbasiertes stochastisches Modell zur Vorhersage der Erdbebenlast
Starke Erdbeben stellen weltweit ein hohes Risiko für urbane Zentren dar, dem unter anderem durch Methoden der aseismischen Bauwerksbemessung begegnet wird. Grundlage hierfür bilden Annahmen und Erfahrungswissen über die lokale seismische Bodenbeschleunigung, Grenzen sind hingegen durch die zusätzlichen Kosten gesetzt. Die Schadensbilanz der Starkbeben der letzten Jahre, auch in den Industrieländern, verdeutlicht die Notwendigkeit, die Konzepte und Methoden des erdbebensicheren Bauens weiter zu verfeinern. In dieser Arbeit wird ein neuer Ansatz zur stochastischen seismischen Lastmodellierung vorgestellt, der über die übliche Annahme eines stationären, eindimensionalen Prozesses für die Bodenbeschleunigung hinausgeht. Ziel ist eine standort- und wellenspezifische räumliche Lastmodellierung, die durch Nutzung von Informationen über physikalische Invarianten eine transparente und kostengünstige aseismische Bauwerksbemessung erlaubt, zumindest aber das Risiko gegenüber gebräuchlichen Bemessungsmethoden reduziert. Solche seismischen und geotechnischen Invarianten sind die gesetzmäßige Struktur des seismischen Wellenfeldes sowie die Resonanzeigenschaften der Bodenschichtung am Standort. Das vorgeschlagene Lastmodell bildet das Wellenfeld am Standort als Komposition stochastischer evolutionärer Teilprozesse auf zeitveränderlichen Hauptachsen ab, die zu Wellenzügen mit jeweils spezifischer Lastcharakteristik korrespondieren. Diese Lastcharakteristik wird sowohl im Frequenz- und Zeitbereich als auch räumlich durch wellenspezifische Formfunktionen beschrieben, deren Parameter stark zu seismischen und geotechnischen Größen korrelieren. Schwerpunkt der Arbeit sind neuartige, korrelationsbasierte Schätzverfahren zur empirischen Spezifikation der Modellparameter für die Baupraxis. Das SAPCA ()spektraladaptive Korrelations-Hauptachsenschätzverfahren (SAPCA) sichert die optimale Erfassung der räumlichen Wellenzüge durch Transformation der Messung auf Referenzkomponenten. Gleichzeitig liefert es - in Verbindung mit einem Korrekturverfahren für den Streichwinkel der Hauptachse - prägnante, assoziierte Hauptachsenverlaufsmuster, anhand derer Dominanzphasen für drei verallgemeinerte Wellenzüge zuverlässig identifiziert werden können. Innerhalb dieser Dominanzphasen werden die wellenzugspezifischen Parameter des Lastmodells bestimmt. Außerdem wird ein Algorithmus angegeben, um Rayleighwellen in Einzelmessungen zu identifizieren. Die Eignung des Modellansatzes und die Effizienz der Schätzverfahren werden anhand von Starkbebenmessungen des Northridge-Erdbebens 1994 verifiziert. Mit dem vorgestellten nichtstationären Modellansatz werden in herkömmlichen stochastischen Lastmodellen unterschätzte Lastanteile des Starkbebenwellenfeldes genauer abgebildet. Bisher unterschlagene oder pauschal modellierte Lastanteile werden erstmals der Analyse und Modellierung zugänglich gemacht. Das stochastische Modell wird bezüglich der wichtigsten lastgenerierenden Effekte physikalisch transparent und dadurch - trotz höherer Komplexität - in der Ingenieurpraxis besser handhabbar. Die Hauptachsenmethode (SAPCA) eignet sich auch für seismologische Analysen im Nahbereich, etwa zur Analyse von Bruchprozessen und topographischen Standorteffekten.
Strong earthquakes are a potential high risk for urban centres worldwide, which is, amongst others, confronted by methods of aseismic structural design. This is based on both assumptions and thorough knowledge about local seismic ground acceleration; limits are set, on the other side, by additional costs. Damage balance of recent strong quakes - also in industrialized countries - emphasize the need for further refinement of concepts and methods of earthquake resistant structural design. In this work, a new approach of stochastic seismic load modelling is presented, letting go the usual presupposition of a stationary, one-dimensional stochastic process for ground acceleration. The goal is site and wave specific load modelling, using information about physical and geotechnical invariants, which enables transparency and low cost approaches in aseismic structural design, but at least reduces seismic risk in comparison to common design methods. Those physical and geotechnical invariants are the structure of the seismic wave field according to physical laws as well as resonance properties of the soil strata at the local site. The proposed load model represents the local wave field as a composition of stochastic evolutionary sub-processes upon time-variant principal axes, which correspond to wave trains with specific load characteristics. Those load characteristics are described in the frequency and time as well as in the spatial domain by wave-specific shape functions, whose parameters strongly correlate to seismic and geotechnical entities. Main contributions of the work are newly developed estimation procedures based on correlation, which serve in the framework of empirical specification of the model parameters for the building practice. The Spectral-Adaptive Principal Correlation Axes (SAPCA) algorithm ensures an optimal covering of the spatial wave trains by transforming the recorded data onto Reference Components. At the same time - in connection with a correction algorithm for the strike angle of the principal axis - it delivers concise associated patterns in the course of the principal axis, which are in turn used to reliably identify dominance phases for three generalized wave trains. Within those wave dominance phases, the wave specific parameters of the load model are determined. Additionally, an algorithm is presented to identify Rayleigh waves in single site acceleration records. Adequacy of the modelling approach and efficiency of the estimation procedures are verified by means of strong motion records from the 1994 Northridge Earthquake The proposed non-stationary modelling approach describes with more accuracy load portions of the strong motion wave field underestimated in conventional stochastic load models. Load portions which are left out or lump-sum modelled so far are made available for analysis and modelling for the first time. The stochastic model gains physical transparency with respect to the most important load generating effects, and hence will be - despite higher complexity - easy to handle in engineering practice. The Principal Axis method will also be useful for seismological analyses in the near field, e.g., for the analysis of rupture processes and topographic site effects.
Ein wellenbasiertes stochastisches Modell zur Vorhersage der Erdbebenlast
A wave-based stochastic model for seismic load prediction
Bretschneider, Jörg (author)
2006
200 Seiten, Bilder, Tabellen, 144 Quellen
Theses
German
Erdbeben , erdbebensicheres Bauwerk , Stadtplanung , Erfahrung (Betriebserfahrung) , Schadensanalyse , Schadensforschung , Erdbebenwelle , stochastisches Modell , Last (mechanisch) , Geotechnik , zeitveränderliches System , Lastcharakteristik , Frequenzbereich , Zeitbereich , Rayleigh-Welle , Schätzverfahren , Standortabhängigkeit
Ein wellenbasiertes stochastisches Modell zur Vorhersage der Erdbebenlast
UB Braunschweig | 2006
|