A platform for research: civil engineering, architecture and urbanism
A novel fault diagnosis method of bearing based on improved fuzzy ARTMAP and modified distance discriminant technique
This paper presents a novel intelligent diagnosis method based on multiple domain features, modified distance discrimination technique and improved fuzzy ARTMAP (IFAM). The method consists of three steps. To begin with, time-domain, frequency-domain and wavelet grey moments are extracted from the raw vibration signals to demonstrate the fault-related information. Then through the modified distance discrimination technique some salient features are selected from the original feature set. Finally, the optimal feature set is input into the IFAM incorporated with similarity based on the Yu's norm in the classification phase to identify the different fault categories. The proposed method is applied to the fault diagnosis of rolling element bearing, and the test results show that the IFAM identify the fault categories of rolling element bearing more accurately and has a better diagnosis performance compared to the FAM. Furthermore, by the application of the bootstrap method to the diagnosis results it can testify that the IFAM has more capacity of reliability and robustness.
A novel fault diagnosis method of bearing based on improved fuzzy ARTMAP and modified distance discriminant technique
This paper presents a novel intelligent diagnosis method based on multiple domain features, modified distance discrimination technique and improved fuzzy ARTMAP (IFAM). The method consists of three steps. To begin with, time-domain, frequency-domain and wavelet grey moments are extracted from the raw vibration signals to demonstrate the fault-related information. Then through the modified distance discrimination technique some salient features are selected from the original feature set. Finally, the optimal feature set is input into the IFAM incorporated with similarity based on the Yu's norm in the classification phase to identify the different fault categories. The proposed method is applied to the fault diagnosis of rolling element bearing, and the test results show that the IFAM identify the fault categories of rolling element bearing more accurately and has a better diagnosis performance compared to the FAM. Furthermore, by the application of the bootstrap method to the diagnosis results it can testify that the IFAM has more capacity of reliability and robustness.
A novel fault diagnosis method of bearing based on improved fuzzy ARTMAP and modified distance discriminant technique
Xu, Zengbing (author) / Xuan, Jianping (author) / Shi, Tielin (author) / Wu, Bo (author) / Hu, Youmin (author)
Expert Systems with Applications ; 36 ; 11801-11807
2009
7 Seiten, 18 Quellen
Article (Journal)
English
Simplified Fuzzy ARTMAP as Pattern Recognizer
British Library Online Contents | 2000
|TECHNICAL PAPERS - Simplified Fuzzy ARTMAP as Pattern Recognizer
Online Contents | 2000
|Fuzzy ARTMAP - A Neural Classifier for Multispectral Image Classification
British Library Conference Proceedings | 1997
|