A platform for research: civil engineering, architecture and urbanism
A reconfiguration approach for fault-tolerant FlexRay networks
In this paper we present an approach for the configuration and reconfiguration of FlexRay networks to increase their fault tolerance. To guarantee a correct and deterministic system behavior, the FlexRay specification does not allow a reconfiguration of the schedapproachule during run time. To avoid the necessity of a complete bus restart in case of a node failure, we propose a reconfiguration using redundant slots in the schedule and/or combine messages in existing frames and slots, to compensate node failures and increase robustness. Our approach supports the developer to increase the fault tolerance of the system during the design phase. It is a heuristic, which, additionally to a determined initial configuration, calculates possible reconfigurations for the remaining nodes of the FlexRay network in case of a node failure, to keep the system working properly. An evaluation by means of realistic safety-critical automotive real-time systems revealed that it determines valid reconfigurations for up to 80% of possible individual node failures. In summary, our approach offers major support for the developer of FlexRay networks since the results provide helpful feedback about reconfiguration capabilities. In an iterative design process these information can be used to determine and optimize valid reconfigurations.
A reconfiguration approach for fault-tolerant FlexRay networks
In this paper we present an approach for the configuration and reconfiguration of FlexRay networks to increase their fault tolerance. To guarantee a correct and deterministic system behavior, the FlexRay specification does not allow a reconfiguration of the schedapproachule during run time. To avoid the necessity of a complete bus restart in case of a node failure, we propose a reconfiguration using redundant slots in the schedule and/or combine messages in existing frames and slots, to compensate node failures and increase robustness. Our approach supports the developer to increase the fault tolerance of the system during the design phase. It is a heuristic, which, additionally to a determined initial configuration, calculates possible reconfigurations for the remaining nodes of the FlexRay network in case of a node failure, to keep the system working properly. An evaluation by means of realistic safety-critical automotive real-time systems revealed that it determines valid reconfigurations for up to 80% of possible individual node failures. In summary, our approach offers major support for the developer of FlexRay networks since the results provide helpful feedback about reconfiguration capabilities. In an iterative design process these information can be used to determine and optimize valid reconfigurations.
A reconfiguration approach for fault-tolerant FlexRay networks
Klobedanz, K. (author) / Koenig, A. (author) / Mueller, W. (author)
2011
6 Seiten, 9 Quellen
Conference paper
English
Absicherung zukuenftiger FlexRay-Anwendungen
Automotive engineering | 2007
|Construction of net topologies for FlexRay
Automotive engineering | 2005
|Fault tolerant distributed architectures for in-vehicular networks
Automotive engineering | 2001
|Test von FlexRay Steuergeraeten am Hardware in the Loop Simulator
Automotive engineering | 2005
|