A platform for research: civil engineering, architecture and urbanism
Base on the experiment results of steel high performance reinforced concrete (SHPRC) structural walls, nonlinear finite element(FE) analysis is performed to simulate the complete process of the loading and concrete crack of SHPRC structural walls in the platform of ABAQUS. The nonlinear of material is taken into account in the models. The reliability of the finite element model is verified through the comparison of the analysis results and the experimental results. Based on the proposed model, the parametric analysis is carried out to study the effect of axial load ratio, aspect ratio, stirrup characteristic value, and steel ratio on the seismic behavior of SHPRC structural walls. It is concluded that the bearing capacity of SHPRC structural walls increase with the increase of the axial load ratio, but the deformation decreases obviously. The deformation and bearing capacity of the structural walls are improved by increasing the steel ratio. With increasing the stirrup characteristic value, the deformation of the structural walls improves significantly. The stirrup characteristic values are proposed to ensure the SHPRC structural walls for different axial load ratios meet the deformation capacity of drift ratio of 1/120,1/100 and 1/80, respectively.
Base on the experiment results of steel high performance reinforced concrete (SHPRC) structural walls, nonlinear finite element(FE) analysis is performed to simulate the complete process of the loading and concrete crack of SHPRC structural walls in the platform of ABAQUS. The nonlinear of material is taken into account in the models. The reliability of the finite element model is verified through the comparison of the analysis results and the experimental results. Based on the proposed model, the parametric analysis is carried out to study the effect of axial load ratio, aspect ratio, stirrup characteristic value, and steel ratio on the seismic behavior of SHPRC structural walls. It is concluded that the bearing capacity of SHPRC structural walls increase with the increase of the axial load ratio, but the deformation decreases obviously. The deformation and bearing capacity of the structural walls are improved by increasing the steel ratio. With increasing the stirrup characteristic value, the deformation of the structural walls improves significantly. The stirrup characteristic values are proposed to ensure the SHPRC structural walls for different axial load ratios meet the deformation capacity of drift ratio of 1/120,1/100 and 1/80, respectively.
Deformation-Based Nonlinear Finite Element Analysis of Steel High Performance Concrete Structural Walls
Ma, Kaize (author)
2012
6 Seiten
Conference paper
English
British Library Conference Proceedings | 2009
|British Library Conference Proceedings | 2012
|Nonlinear finite element analysis of high-strength concrete shear walls
British Library Online Contents | 2009
|