A platform for research: civil engineering, architecture and urbanism
Recycled-Aggregate Bedding Mortars for Repair of Historical Buildings
In this work, the possibility of using environmentally-friendly mortars (with crushed bricks replacing sand) as bedding mortars for repair of historical building was studied. When bedding mortars are used for intervention on historical building a compatibility issue can emerge. Indeed, if masonry containing sulphate salts is restored by using mortars based on hydraulic binders the risk of failure is high. For this reason, as binders alternatively a blended cement and a hydraulic lime were used, both proving to be unsensitive to sulphates. Two crushed brick aggregates were alternatively added to the mortars by fully replacing virgin sand, they showed different grain size distributions and, consequently, a different content of very fine materials. All the environmentally-friendly mortars were characterized from a mechanical point of view. Then their physical behaviour was studied trough microstructure characterization, as well as through the evaluation of both their resistance to the vapor permeability and their capillary water absorption. Results obtained showed that the use of recycled bricks instead of virgin sand, particularly if roughly ground, could allow to achieve a good compromise between vapour permeability and capillary absorption of mortar.
Recycled-Aggregate Bedding Mortars for Repair of Historical Buildings
In this work, the possibility of using environmentally-friendly mortars (with crushed bricks replacing sand) as bedding mortars for repair of historical building was studied. When bedding mortars are used for intervention on historical building a compatibility issue can emerge. Indeed, if masonry containing sulphate salts is restored by using mortars based on hydraulic binders the risk of failure is high. For this reason, as binders alternatively a blended cement and a hydraulic lime were used, both proving to be unsensitive to sulphates. Two crushed brick aggregates were alternatively added to the mortars by fully replacing virgin sand, they showed different grain size distributions and, consequently, a different content of very fine materials. All the environmentally-friendly mortars were characterized from a mechanical point of view. Then their physical behaviour was studied trough microstructure characterization, as well as through the evaluation of both their resistance to the vapor permeability and their capillary water absorption. Results obtained showed that the use of recycled bricks instead of virgin sand, particularly if roughly ground, could allow to achieve a good compromise between vapour permeability and capillary absorption of mortar.
Recycled-Aggregate Bedding Mortars for Repair of Historical Buildings
Corinaldesi, Valeria (author)
2012
8 Seiten
Conference paper
English
Recycled-Aggregate Bedding Mortars for Repair of Historical Buildings
Trans Tech Publications | 2012
|Recycled-Aggregate Bedding Mortars for Repair of Historical Buildings
British Library Conference Proceedings | 2012
|Environmentally-friendly bedding mortars for repair of historical buildings
British Library Online Contents | 2012
|Environmentally-friendly bedding mortars for repair of historical buildings
Online Contents | 2012
|