A platform for research: civil engineering, architecture and urbanism
Experimental Study of Sandwich Panels Subjected to Foam Projectile Impact
Similar blast loading characteristics can be obtained using impact of aluminium foam projectiles, which enables blast tests to be mimicked in a laboratory scale and in a safer environment. The purpose of this study is to determine the back-face deflection history of aluminium sandwich panels experimentally by aids of a laser displacement meter when panels are subjected to the impact of metal foam projectiles. This information was usually determined using finite element analysis (FEA) due to the difficulty in the experiment. The projectiles are cylindrical ALPORAS aluminium foam with diameter of 37 mm, length of 50 mm and nominal relative density of 10%. The sandwich panels consist of two 1 mm aluminium face-sheets and an aluminium honeycomb as the core. There are five different core configurations with a brand name of HEXCEL. The projectiles are fired towards the centre of the sandwich panels at different velocities using a gas gun. During the tests, a laser optical displacement measuring device is used to record the history of the back-face deflection experimentally. The deflection of the back-face is found to reach the maximum before coming to rest at a smaller value. The final back-face deflections of the sandwich panels show exponential relationship with the projectile impulse. The final deflections are compared with the deflection of monolithic plates with equal mass. The sandwich panels deflect less than the monolithic plate with an equal mass up to a critical value but continue to increase significantly afterwards. Care should be taken when using sandwich panels as protective structures against foam projectiles as beyond this point, the monolithic plates outperform the sandwich panels in absorbing the impact load.
Experimental Study of Sandwich Panels Subjected to Foam Projectile Impact
Similar blast loading characteristics can be obtained using impact of aluminium foam projectiles, which enables blast tests to be mimicked in a laboratory scale and in a safer environment. The purpose of this study is to determine the back-face deflection history of aluminium sandwich panels experimentally by aids of a laser displacement meter when panels are subjected to the impact of metal foam projectiles. This information was usually determined using finite element analysis (FEA) due to the difficulty in the experiment. The projectiles are cylindrical ALPORAS aluminium foam with diameter of 37 mm, length of 50 mm and nominal relative density of 10%. The sandwich panels consist of two 1 mm aluminium face-sheets and an aluminium honeycomb as the core. There are five different core configurations with a brand name of HEXCEL. The projectiles are fired towards the centre of the sandwich panels at different velocities using a gas gun. During the tests, a laser optical displacement measuring device is used to record the history of the back-face deflection experimentally. The deflection of the back-face is found to reach the maximum before coming to rest at a smaller value. The final back-face deflections of the sandwich panels show exponential relationship with the projectile impulse. The final deflections are compared with the deflection of monolithic plates with equal mass. The sandwich panels deflect less than the monolithic plate with an equal mass up to a critical value but continue to increase significantly afterwards. Care should be taken when using sandwich panels as protective structures against foam projectiles as beyond this point, the monolithic plates outperform the sandwich panels in absorbing the impact load.
Experimental Study of Sandwich Panels Subjected to Foam Projectile Impact
Yahaya, Mohd Azman (author) / Ruan, Dong (author) / Lu, Guo-Xing (author)
2013
4 Seiten
Conference paper
English
Experimental Study of Sandwich Panels Subjected to Foam Projectile Impact
British Library Online Contents | 2013
|Response of Reinforced and Sandwich Concrete Panels Subjected to Projectile Impact
British Library Conference Proceedings | 2018
|Finite Element Simulation of Aluminium Foam Sandwich Panels Subjected to Impact Loading
British Library Conference Proceedings | 2011
|British Library Online Contents | 2013
|Structural response of polyethylene foam-based sandwich panels subjected to edgewise compression.
BASE | 2013
|