A platform for research: civil engineering, architecture and urbanism
In order to discuss the failure mechanism of concrete filled steel tube lattice wind generator tower joints. Based on the parameters of web member section form, and using nonlinear static numerical simulation, this dissertation research on the stressed complex joints. The results of the study show that the abdominal rod for circular steel tubes joint (JD1) is instability failure which is led to the local buckling of compressive bar; the abdominal rod for single angle steel (JD2) or double angle steel (JD3) joint is instability failure because of the local buckling of the joint board. Under the web members and joint boards all fitting their own capacity requirements, JD1 is very easy to make draw bar broken on both sides of the pillar tube wall region, JD2 and JD3 are apt to damage on the weak positions of joint board ends and pillar tube wall joint. In the three forms of web member joints, the best ultimate bearing capacity is JD1, JD3 is the second and JD2 is minimum.
In order to discuss the failure mechanism of concrete filled steel tube lattice wind generator tower joints. Based on the parameters of web member section form, and using nonlinear static numerical simulation, this dissertation research on the stressed complex joints. The results of the study show that the abdominal rod for circular steel tubes joint (JD1) is instability failure which is led to the local buckling of compressive bar; the abdominal rod for single angle steel (JD2) or double angle steel (JD3) joint is instability failure because of the local buckling of the joint board. Under the web members and joint boards all fitting their own capacity requirements, JD1 is very easy to make draw bar broken on both sides of the pillar tube wall region, JD2 and JD3 are apt to damage on the weak positions of joint board ends and pillar tube wall joint. In the three forms of web member joints, the best ultimate bearing capacity is JD1, JD3 is the second and JD2 is minimum.
The Study on Static Force Behavior of Concrete Filled Steel Tube Lattice Wind Generator Tower Joints
2013
5 Seiten
Conference paper
English
The Study on Static Force Behavior of Concrete Filled Steel Tube Lattice Wind Generator Tower Joints
British Library Conference Proceedings | 2013
|Static Behavior Study for Latticed Concrete-Filled Steel Tubular Wind Turbine Tower Joints
British Library Conference Proceedings | 2012
|British Library Conference Proceedings | 2014
|