A platform for research: civil engineering, architecture and urbanism
Comparison of Analytical Solutions with Finite Element Solutions for Ultimate Bearing Capacity of Strip Footings
The finite element method is used to compute the ultimate bearing capacity of a fictitious strip footing resting on the surface of c-φ weightless soils and a real strip footing buried in the c-φ soils with weight. In order to compare the numerical solutions with analytical solutions, the mainly existing analytical methods are briefly introduced and analyzed. To ensure the precision, most of analytical solutions are obtained by the corresponding formulas rather than table look-up. The first example shows that for c-φ weightless soil, the ABAQUS finite element solution is almost identical to the Prandtls closed solutions. Up to date, though no closed analytical solution is obtained for strip footings buried in c-φ soils with weight, the numerical approximate solutions obtained by the finite element method should be the closest to the real solutions. Apparently, the slip surface disclosed by the finite element method looks like Meyerhofs slip surface, but there are still some differences between the two. For example, the former having an upwarping curve may be another log spiral line, which begins from the water level of footing base to ground surface rather than a straight line like the latter. And the latter is more contractive than the former. Just because these reasons, Meyerhofs ultimate bearing capacity is lower than that of the numerical solution. Comparison between analytical and numerical solutions indicates that they have relatively large gaps. Therefore, finite element method can be a feasible and reliable method for computations of ultimate bearing capacity of practical strip footings.
Comparison of Analytical Solutions with Finite Element Solutions for Ultimate Bearing Capacity of Strip Footings
The finite element method is used to compute the ultimate bearing capacity of a fictitious strip footing resting on the surface of c-φ weightless soils and a real strip footing buried in the c-φ soils with weight. In order to compare the numerical solutions with analytical solutions, the mainly existing analytical methods are briefly introduced and analyzed. To ensure the precision, most of analytical solutions are obtained by the corresponding formulas rather than table look-up. The first example shows that for c-φ weightless soil, the ABAQUS finite element solution is almost identical to the Prandtls closed solutions. Up to date, though no closed analytical solution is obtained for strip footings buried in c-φ soils with weight, the numerical approximate solutions obtained by the finite element method should be the closest to the real solutions. Apparently, the slip surface disclosed by the finite element method looks like Meyerhofs slip surface, but there are still some differences between the two. For example, the former having an upwarping curve may be another log spiral line, which begins from the water level of footing base to ground surface rather than a straight line like the latter. And the latter is more contractive than the former. Just because these reasons, Meyerhofs ultimate bearing capacity is lower than that of the numerical solution. Comparison between analytical and numerical solutions indicates that they have relatively large gaps. Therefore, finite element method can be a feasible and reliable method for computations of ultimate bearing capacity of practical strip footings.
Comparison of Analytical Solutions with Finite Element Solutions for Ultimate Bearing Capacity of Strip Footings
Dai, Zi-Hang (author) / Xu, Xiang (author)
2013
10 Seiten
Conference paper
English
British Library Conference Proceedings | 2013
|Ultimate Bearing Capacity of Strip Footings
Springer Verlag | 2023
|Ultimate Bearing Capacity of Two Interfering Rough Strip Footings
Online Contents | 2007
|Ultimate Bearing Capacity Prediction of Eccentrically Inclined Loaded Strip Footings
Online Contents | 2018
|Ultimate Bearing Capacity Prediction of Eccentrically Inclined Loaded Strip Footings
Online Contents | 2018
|