A platform for research: civil engineering, architecture and urbanism
Seismic Performance of Insulated Sandwich Wall Panel Subjected to Lateral Cyclic Loading
In this paper, the seismic performance of the insulated sandwich wall panel is studied. Two samples W1 and W2 of Insulated Sandwich Wall Panel (ISWP) were tested under in-plane lateral cyclic loading. The difference between W1 and W2 is the numbers of wall plug used in order to hold the specimen in standing parallel position. Four wall plugs used for W1 meanwhile eleven wall plugs used for W2. ISWP is placed axially on top of the foundation beam. The concrete block is slotted on top of the wall panel as load transfer from the roof. The aspect ratio of the specimen is Ar = H/B = 1.97 and slenderness ratio is λ = H/t = 36.92. The testing is conducted with small percent of drift which is 0.1% and continued with 0.2%. The drift was increased gradually about 0.2% until reach ±1.0%. Furthermore, the specimen was tested with an increment of ±0.2% drift until the specimens reach the strength capacity. The experimental results showed that for the first specimen, the wall panel behaves elastically up to 0.4% drift before yielding. Due to loading and unloading condition, the aluminium frame that used along the perimeter of the wall panel buckled at 1.2% drift. For the second specimen the wall panel behaves elastically up to 0.4% drift before yielding. Once 0.6% drift applied, crack started to appear at the connection joint between G. I channel and foundation beam. The analysis of the result from the graphs of hysteresis loop for both W1 and W2 were presented by considering the seismic parameter such as stiffness, ductility and equivalent viscous damping.
Seismic Performance of Insulated Sandwich Wall Panel Subjected to Lateral Cyclic Loading
In this paper, the seismic performance of the insulated sandwich wall panel is studied. Two samples W1 and W2 of Insulated Sandwich Wall Panel (ISWP) were tested under in-plane lateral cyclic loading. The difference between W1 and W2 is the numbers of wall plug used in order to hold the specimen in standing parallel position. Four wall plugs used for W1 meanwhile eleven wall plugs used for W2. ISWP is placed axially on top of the foundation beam. The concrete block is slotted on top of the wall panel as load transfer from the roof. The aspect ratio of the specimen is Ar = H/B = 1.97 and slenderness ratio is λ = H/t = 36.92. The testing is conducted with small percent of drift which is 0.1% and continued with 0.2%. The drift was increased gradually about 0.2% until reach ±1.0%. Furthermore, the specimen was tested with an increment of ±0.2% drift until the specimens reach the strength capacity. The experimental results showed that for the first specimen, the wall panel behaves elastically up to 0.4% drift before yielding. Due to loading and unloading condition, the aluminium frame that used along the perimeter of the wall panel buckled at 1.2% drift. For the second specimen the wall panel behaves elastically up to 0.4% drift before yielding. Once 0.6% drift applied, crack started to appear at the connection joint between G. I channel and foundation beam. The analysis of the result from the graphs of hysteresis loop for both W1 and W2 were presented by considering the seismic parameter such as stiffness, ductility and equivalent viscous damping.
Seismic Performance of Insulated Sandwich Wall Panel Subjected to Lateral Cyclic Loading
Md Fudzee, Mohd Faiz (author) / Abdul Hamid, Nor Hayati (author)
2013
5 Seiten
Conference paper
English
Seismic Performance of Insulated Sandwich Wall Panel Subjected to Lateral Cyclic Loading
British Library Online Contents | 2014
|Trans Tech Publications | 2011
|