A platform for research: civil engineering, architecture and urbanism
Wireless displacement sensing system for bridges using multi-sensor fusion
Accurate displacement sensing or estimation is an important task for reliably assessing the condition of civil infrastructure such as bridges and buildings, because the structural displacement describes the behavior of a structure and indicates structural safety according to the design limit. However, it is difficult to directly measure the displacement of a bridge structure due to the inaccessibility of a reference point especially when bridges are built over a highway, a river or the sea. As an alternative, an indirect displacement estimation using two different types of measurements such as strain and acceleration (i.e., multimetric data) has been developed. While the approach has been seen as promising, the combination of the traditional sensing system based on wired sensors and the multimetric data-based algorithm is inappropriate or impractical in real-world applications of the approach. This paper proposes a new displacement sensing system by incorporating wireless sensor technology with the multimetric data-based algorithm, which can address the difficulties and issues found in the traditional sensing system to realize a practical means of measuring displacement in full-scale bridges. The proposed wireless displacement sensing system enables (a) time-synchronized acceleration and strain measurement, (b) high-precision strain sensing and (c) improved applicability due to the wireless communication as well as the previous two features. The effectiveness of the proposed system is experimentally verified in laboratory and full-scale experiments.
Wireless displacement sensing system for bridges using multi-sensor fusion
Accurate displacement sensing or estimation is an important task for reliably assessing the condition of civil infrastructure such as bridges and buildings, because the structural displacement describes the behavior of a structure and indicates structural safety according to the design limit. However, it is difficult to directly measure the displacement of a bridge structure due to the inaccessibility of a reference point especially when bridges are built over a highway, a river or the sea. As an alternative, an indirect displacement estimation using two different types of measurements such as strain and acceleration (i.e., multimetric data) has been developed. While the approach has been seen as promising, the combination of the traditional sensing system based on wired sensors and the multimetric data-based algorithm is inappropriate or impractical in real-world applications of the approach. This paper proposes a new displacement sensing system by incorporating wireless sensor technology with the multimetric data-based algorithm, which can address the difficulties and issues found in the traditional sensing system to realize a practical means of measuring displacement in full-scale bridges. The proposed wireless displacement sensing system enables (a) time-synchronized acceleration and strain measurement, (b) high-precision strain sensing and (c) improved applicability due to the wireless communication as well as the previous two features. The effectiveness of the proposed system is experimentally verified in laboratory and full-scale experiments.
Wireless displacement sensing system for bridges using multi-sensor fusion
Drahtloses Verschiebungsmesssystem für Brücken mit Multisensorfusion
Park, Jong-Woong (author) / Sim, Sung-Han (author) / Jung, Hyung-Jo (author)
Smart Materials and Structures ; 23 ; 045022/1-045022/12
2014
12 Seiten, 38 Quellen
Article (Journal)
English
Wireless displacement sensing system for bridges using multi-sensor fusion
British Library Online Contents | 2014
|Wiley | 2018
|