A platform for research: civil engineering, architecture and urbanism
Study on Prediction Model of Dynamic Resilient Modulus of Cohesive Subgrade Soils Considering Moisture Variation
The matric suctions were measured by the filter paper method, and the parameters of soil-water characteristic curve were obtained. In order to investigate the effect of moisture content on cohesive subgrade soils dynamic resilient modulus, a series of dynamic-triaxial test were carried out. Based on the matric suctions measured by the filter paper method, the relationship between dynamic resilient modulus and matric suctions were analyzed. The study demonstrated that the dynamic resilient modulus values decrease with the increase of circular deviator stress and moisture content, in reverse of matric suctions. Considering that the dynamic resilient modulus is a function of deviator stress and bulk stress, based on the present three parameters compound constitutive model which reflects the effect of bulk stress and deviator stress, the effect of matric suctions which could indirectly reflect the effect of moisture content was introduced. And then the prediction model incorporating the effect of stress and moisture for cohesive subgrade soils was established. The model was utilized for experimental data regression analysis, a high coefficient of determination shows that the model is accurate and credible. The prediction models not only can evaluate the long-term performance of subgrade soil in Southern China's rainy areas, but also can provide parameters for the pavement design based on dynamic method.
Study on Prediction Model of Dynamic Resilient Modulus of Cohesive Subgrade Soils Considering Moisture Variation
The matric suctions were measured by the filter paper method, and the parameters of soil-water characteristic curve were obtained. In order to investigate the effect of moisture content on cohesive subgrade soils dynamic resilient modulus, a series of dynamic-triaxial test were carried out. Based on the matric suctions measured by the filter paper method, the relationship between dynamic resilient modulus and matric suctions were analyzed. The study demonstrated that the dynamic resilient modulus values decrease with the increase of circular deviator stress and moisture content, in reverse of matric suctions. Considering that the dynamic resilient modulus is a function of deviator stress and bulk stress, based on the present three parameters compound constitutive model which reflects the effect of bulk stress and deviator stress, the effect of matric suctions which could indirectly reflect the effect of moisture content was introduced. And then the prediction model incorporating the effect of stress and moisture for cohesive subgrade soils was established. The model was utilized for experimental data regression analysis, a high coefficient of determination shows that the model is accurate and credible. The prediction models not only can evaluate the long-term performance of subgrade soil in Southern China's rainy areas, but also can provide parameters for the pavement design based on dynamic method.
Study on Prediction Model of Dynamic Resilient Modulus of Cohesive Subgrade Soils Considering Moisture Variation
Li, Zhi-Yong (author) / Zou, Jing-Rong (author) / Dong, Cheng (author)
2014
6 Seiten
Conference paper
English
British Library Conference Proceedings | 2014
|British Library Online Contents | 2007
|RESPONSE OF RESILIENT MODULUS TO MOISTURE VARIATION IN UNSATURATED SUBGRADE SOILS
British Library Conference Proceedings | 2015
|